
Graph-based Exploration of
Non-graph Datasets

Udayan Khurana
IBM Research

ukhurana@us.ibm.com

work with Deepak Turaga, Srinivasan Parthasarathy

mailto:ukhurana@us.ibm.com

Graph Analytics

• Graphs capture interconnections or interactions.
• Graphs are omnipresent - social media, emails, news stories,

financial records, system logs, biological structures, …
• Network analysis provide useful insights

• Node centrality metrics tell relative importance of entities
• Global network metrics reflect collective behavior.

• Last few years have seen a rapid growth graph database
management systems and graph analysis software.  
 
 

• Majority of world’s data is present in non-graph formats
• Relational Databases, JSON, XML, CSV, Plain Text, …

• Extracting graphs from a dataset is hard:
• Identifying the appropriate graph
• Writing code to perform the extraction
• Time, skill and effort from an analyst or data scientist  
 
 
 
 

Non-graph Datasets

• The process of manual graph extraction is based on
visual inspection and understanding of the data/domain.

• However, it is (a) time consuming; (b) Requires coding/
query writing; (c) Possible to miss out on useful graphs

• E.g., In DBLP database:  
 
 
 
 

• Example of an extraction query  
(Co-authorship graph):

Manual Graph Extraction

id# name#

Author#

id# name# year# loca1on#

Conference#

id# 1tle# cid#

Publica1on#

aid# pid#

AuthorPub#

Nodes: Select Author.id from Author;
Edges: Select A1.id, A2.id from Author A1,
Author A2, AuthPub AP1, AuthPub AP2 WHERE
AP1.aid = A1.aid AND AP2.aid = A2.aid AND
AP1.pid = AP2.pid;

Graph Analytics Methodology

• Graph Analytics is performed in an iterative manner:
• (1) graph extraction from the dataset
• (2) running an analysis algorithm on the graph
• (3) interpretation of results
• (4) running a different algorithm on the same graph
• (5) finding another graph from the dataset.

Figure 3: Graph Generator tool with two different graph extraction queries for a small DBLP dataset.

3. DEMONSTRATION
Finally, we briefly describe the interactive graph discovery and

exploration front-end that we have developed, and discuss the demon-
stration plan. The front-end allows a user to: (a) connect to an ex-
isting relational database and view its schema, (b) write queries in
our DSL to extract different graphs, (c) explore the graphs through
node-link visualizations and various global and node-level metrics,
and (d) compare graphs extracted using different queries. Figure 3
shows one such snapshot where the user connects to the DBLP
database. On the top left, the database name and other connec-
tion details can be specified. Load Schema displays the list of
tables, attribute information, and constraints such as primary and
foreign keys. The New Query option creates a new pane on the
right. Here, the user would write a graph extraction query using the
schema details displayed on the left.
Extract Graph initiates the graph generation task at the back-

end, along with the computation of several global and node-level
metrics. Upon its completion, a small subset of the extracted graph
is displayed using a force-directed layout. It also displays graph
statistics such as node count, density, diameter, etc., and a plot
of the node degree distribution. The user can visualize specific
portions of the graph through the Another Sample option by
specifying a keyword in the text-box besides it. The system uses a
keyword search on nodes’ attributes and returns a subgraph around
the node with the first occurrence. In case of a missing keyword
or the hint being unusable, a random subgraph is presented in-
stead. Using the Node Analysis option, a user can view and
sort by different metrics for nodes, such as degree, betweenness
centrality, PageRank, clustering coefficient, and others. Multiple
query panes, launched through the New Query option, are aligned
such that different queries and graphs are vertically juxtaposed for
comparison. Moreover, by selecting Export Graph, the en-
tire generated graph can be serialized to disk into one of the stan-
dard formats in the drop-down list. This gives the user the ability
to load the graph into any graph library that supports these for-

mats, and execute graph algorithms against it. Finally, if the user
is unfamiliar with the dataset and wants to explore, she can use
the Auto-generate Graphs option. Based upon the database
schema, it automatically populates a few panes with valid extrac-
tion queries and resultant graphs.

Demonstration Plan: During the demonstration, the conference
attendees will be able to use the front-end to write graph extraction
queries over various pre-populated datasets, and visually explore
the results. The conference attendees will also be encouraged to
think about potential graphs among the entities in the dataset, and
how those can be mapped to the proposed graph extraction DSL.
Certain pre-selected queries will be used to demonstrate graph ex-
ploration and comparison. We will also demonstrate how users can
effortlessly operate upon the extracted graphs using the Python Net-
workX graph library and its built-in graph algorithms.

Acknowledgments: This work was supported by NSF under grant
IIS-1319432, and by an IBM Faculty Award.
4. REFERENCES
[1] R. De Virgilio, A. Maccioni, and R. Torlone. Converting relational to

graph databases. In GRADES, 2013.
[2] J. Fan, G. Raj, and J. Patel. The case against specialized graph

analytics engines. In CIDR, 2015.
[3] T. Feder and R. Motwani. Clique partitions, graph compression and

speeding-up algorithms. JCSS, 1995.
[4] N. Jain, G. Liao, and T. Willke. GraphBuilder: A Scalable Graph ETL

Framework. In GRADES, 2013.
[5] A. Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and

M. Stonebraker. VERTEXICA: your relational friend for graph
analytics! PVLDB, 7(13):1669–1672, 2014.

[6] U. Khurana and A. Deshpande. Efficient snapshot retrieval over
historical graph data. In ICDE, 2013.

[7] M. Najork et al. Of hammers and nails: An empirical comparison of
three paradigms for processing large graphs. In WSDM, 2012.

[8] Y. Perez et al. Ringo: Interactive graph analytics on big-memory
machines. In SIGMOD, 2015.

[9] D. Simmen et al. Large-scale Graph Analytics in Aster 6: Bringing
Context to Big Data Discovery. PVLDB, 7(13), 2014.

2035

Analyses
1 32

45

Interpretation

Dataset Graph

GraphViewer: Overview

Graph
Enumeration

Graph
Extraction

Graph-Algo
Matching

Execution and
Summarization

GraphMapper MCS

Interpretation

GRAPH VIEWER

Graph Spec Run Spec

Compact
Graph Array

Analyst

Analyst Analyst

Data source

Alternative Graph Extraction
Approach: Enumeration

• We propose an automated graph enumeration approach.
• Given a schema,

• We construct a Schema Graph

• Any path starting and ending at a terminal node describes a
graph definition.
• E.g., 9 -> 10 -> 11 -> 10 -> 9 corresponds to the co-author

graph described earlier.

id# name#

Author#

id# name# year# loca1on#

Conference#

id# 1tle# cid#

Publica1on#

aid# pid#

AuthorPub#

98
4

1

2 311
10 6

7

5

idname

id

title
cid id

name

loc
year

pid
aid

conference(id, name, loc, year)

author(id, name)
publication(id, title, cid) authorpublication(pid, cid)

Potential node-set/entity type Ordinary attribute Foreign KeyCo-attributes

Extracting Graphs from  
Non-structured Data

• Unstructured data such as text doesn't provide a schema
• Approach: Use Natural Language Processing to annotate:

• Entities: Persons, Locations, Organizations, etc.
• Relationships: Subject-Object-Predicate, Co-occurence

• For semi-structured data such as JSON, XML, CSV, we
• Adopt dual approaches - structured and unstructured
• Try to introduce structure as well as treat it as text

Metric Computation and
Summarization

• Graph enumeration produces multiple graphs,
• SG = {G1, G2 . . . }

• These are matched with different algorithms,
• SA = {A1 , A2 . . . }

• We run O(|SA |x|SG|) graph metric algorithms
• Produces O(|SA |x|SG|x|E|) results where E is the set of all entities

• The user can arrange the results in different ways
• Aggregate by entity, entity-type, graph or algo.
• Filter, Sort and Join to perform data exploration.
• Potentially use data cubes.  

Demo

• View this demo at VLDB 2016 at the following times
(Graph and Semistructured Data):
• Tuesday 4:00-5:30 PM (Maple - 3a)
• Wednesday 11:15-12:45 (Maple - 3b)

• http://localhost:8080/GraphViewer  
 
 
 

http://localhost:8080/GraphViewer

Demo: Data Source

Demo: Graph Specification

Demo: Run Specification

Demo: Exploring Results

System Aspects

• Extensibility:
• New data types; new analytics; different aggregators

• Storage efficiency:
• Shared nodes and edges in multiple fetched graphs

present redundancy.
• We store the graphs efficiently in an overlaid manner

• Runtime computational sharing:
• Multi-query optimization in relational databases

eliminate computational redundancy
• Sharing text parsing across multiple graphs

Contributions

• We propose a new methodology for performing graph-
based analysis on of non-graph datasets:
• Through automated graph enumeration
• Through automated code assembly and deployment
• Combines an analyst’s input with automated specs

• It assists an analyst in graph-based analysis by:
• Reducing time, skill and effort

• It is efficient in exploring different kinds of datasets
through graph-based analytics

Research Problems

• Efficiently find graphs, subgraphs or nodes that satisfy a
certain criteria:
• For instance, “list graphs with density > d”.
• Can we do it without extracting all possible graphs?

• Predict the more useful graph/analytics for a given task:
• Use training examples to learn correlations.
• Avoid generating all graphs.

• System efficiency in extraction and execution of:
• Multiple graphs and multiple algorithms.

