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ABSTRACT
On-demand curation (ODC) tools like Paygo, KATARA,
and Mimir allow users to defer expensive curation effort un-
til it is necessary. In contrast to classical databases that
do not respond to queries over potentially erroneous data,
ODC systems instead answer with guesses or approxima-
tions. The quality and scope of these guesses may vary and
it is critical that an ODC system be able to communicate
this information to an end-user. The central contribution of
this paper is a preliminary user study evaluating the cog-
nitive burden and expressiveness of four representations of
“attribute-level” uncertainty. The study shows (1) insignifi-
cant differences in time taken for users to interpret the four
types of uncertainty tested, and (2) that different presen-
tations of uncertainty change the way people interpret and
react to data. Ultimately, we show that a set of UI design
guidelines and best practices for conveying uncertainty will
be necessary for ODC tools to be effective. This paper rep-
resents the first step towards establishing such guidelines.

1. INTRODUCTION
Historically, the quality of a dataset would be ensured be-

fore it was analyzed, often through complex, carefully devel-
oped curation processes designed to completely shield ana-
lysts from any and all uncertainty. This curation establishes
trust in the data, which in turn helps to establish trust in the
results of analyses. However, as typical data sizes and rates
grow, this type of brute-force upfront curation process is be-
coming increasingly impractical. As a result, analysts have
started turning to new, “on-demand” or “pay-as-you-go” ap-
proaches [1, 2, 7, 10, 12, 14] to data curation. On-demand
curation (ODC) systems minimize the amount of upfront
time and effort required to load, curate, and integrate data.
Data stored in an ODC is, initially at least, of low quality
and queries are liable to produce incomplete or incorrect re-
sults. To mitigate the unreliability of these results, ODC
systems typically provide a form of provenance or lineage,

tracking the effects of uncertainty through queries and tag-
ging results with relevant quality metrics (e.g., confidence
bounds, standard deviations, or probabilities). If the ana-
lyst finds the result quality insufficient, the ODC can help
her to prioritize her data curation efforts.

Most ODC efforts are specialized forms of probabilistic
databases [13] that allow for queries over uncertain, proba-
bilistically defined data. Classical probabilistic databases
produce outputs either in the form of “certain” answers
(that provide only limited practical utility), or in the form
of probability distributions. Representing a query output as
a distribution alleviates the monotonous (and error-prone)
task of handling probabilities, error conditions, and outliers
in the middle of a query. Nevertheless, error-handling logic
is still necessary, even if it is never expressly declared; A hu-
man interpreting the results must decide whether and how
to act on the results given. Just having a probability distri-
bution for query results is insufficient: the uncertainty must
be communicated to the users who will ultimately act on the
results. Complicating matters further is the fact that many
database users lack the extensive background in statistics
necessary to interpret complex probability distributions.

In this paper, we present our initial efforts to explore how
probabilistic databases can communicate uncertainty about
query results to their users. Fundamentally, we are inter-
ested in how the database should represent potential errors
in tabular data being presented to the user. A represen-
tation that communicates too much information can create
an unnecessary cognitive burden for users. Conversely, if
a representation communicates too little, the user may not
realize that data values are compromised and act on invalid
information.

To explore this tradeoff between imposed cognitive burden
and efficacy, we conducted a preliminary user study with
14 participants drawn from the Department of Computer
Science and Engineering at the University at Buffalo. We
explored four different representations of one specific form
of data uncertainty called attribute-level uncertainty. Our
results show that the choice of how to communicate low-
quality data has a substantial impact on how users react
to that information. Responses to different representations
ranged from a desire for more information, an efficient use
of presented contextual details, and even included mild fear
responses to the data being presented. Thus, we argue that
the design of interface elements for representing uncertainty
is a critical part of probabilistic databases, ODCs, and data
quality research in general. Concretely, this paper makes
the following contributions: (1) We outline a user study that
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Rating Source
Product Buybeast Amazeo Targe Note
Samesung 4.5 3.0 3.5
Magnetbox 2.5 3.0

Mapple 5.0 3.5 Not a TV?

Figure 1: Examples of uncertainty.

explores four different presentations of attribute-level uncer-
tainty. (2) We quantitatively analyze the tradeoff between
cognitive burden and decision-making based on results from
our study. (3) We qualitatively analyze the different repre-
sentations’ effects on study participants’ thought processes.

2. BACKGROUND
A probabilistic database [13] 〈D, P 〉 is typically defined

as a set of deterministic database instances D ∈ D that
share a common schema, and a probability measure P :
D 7→ [0, 1] over this set. Under possible worlds semantics, a
deterministic query Q may be evaluated on a probabilistic
database by (conceptually) evaluating it simultaneously on
all instances in D, producing a set of relation instances:

Q(D) = { Q(D) | D ∈ D }

Note that these semantics also induce a probability measure
over the set of possible query results as a marginal of P
computed over the result set.

Numerous semi-automated tools for curating low-quality
data [1, 2, 14, 11] emit probabilistic database relations.
These relations model the ambiguity that arises during au-
tomated data curation, most frequently appearing in one of
three forms: (1) Row-level uncertainty, (2) Attribute-level
uncertainty, and (3) Open-world uncertainty. Row-level un-
certainty arises when a specific tuple’s membership in a re-
lation is unknown. Attribute-level uncertainty arises when
specific values in the database are not known precisely. Fi-
nally, open-world uncertainty arises when a relation can not
be bounded to a finite set of possible tuples.

Example 1. The example spreadsheet given in Figure 1
shows reviews for 3 fictional television products from 3 fic-
tional sources. Each of the three types of uncertainty are
illustrated: It is unclear whether the Mapple is actually a
television (row-level uncertainty). There are ratings miss-
ing for both the Magnetbox and the Mapple (attribute-level
uncertainty). Finally, there is the possibility that the spread-
sheet is incomplete and there are television products missing
(open-world uncertainty).

Several mechanisms for presenting probability distribu-
tions to end-users have been proposed. A common approach
is to present only so-called “certain” answers [3] — the sub-
set of the output relation with no row- or attribute-level
uncertainty. Although computing certain answers presents
a computationally interesting challenge, completely exclud-
ing low-quality results significantly decreases the utility of
the entire result set. Another common approach is to com-
pute statistical metrics like expectations or variances for
attribute-level uncertainty, and per-row probabilities (con-
fidences) for row-level uncertainty. Presenting this infor-
mation to users in a way that can be clearly distinguished
from deterministic data is challenging. Thus, systems like
MayBMS [5] and MCDB [6] typically require users to explic-
itly request specific statistical metrics as part of queries. The

mental overhead of manually tracking which attributes of a
dataset are uncertain is an unnecessary burden on users; In
multiple efforts where we have attempted to deploy proba-
bilistic databases in practice [9, 14, 11], manual management
of uncertain data has proven to be a non-starter.

Uncertainty also arises in other contexts. For example,
Online Aggregation [4] uses sampling to approximate and
incrementally refine results for aggregate queries. The user
interface explicitly gives an expectation, confidence bounds,
and % completion, clearly communicating that the result is
an approximation, and the level of quality a user can expect
from it. A second example, Jigsaw [9] simulates what-if sce-
narios, producing graphs that illustrate possible outcomes
over time. Uncertainty is presented visually, with error
bars and secondary lines used to show standard-deviations.
Wrangler [8] helps users to visualize errors in data: A “data
quality” bar communicates the fraction of data in each col-
umn that conforms to the column’s type and the number
of blank records. Finally, the Mimir system [14, 11] uses
automatic data curation operators that tag curated records
with markers that persist through queries. These markers
manifest as highlights that communicate the presence of at-
tribute and row-level uncertainty. Users click on fields or
rows to learn more about why the value/row is uncertain.

3. EXPERIMENTAL DESIGN
The experiment consisted of a ranking task where partici-

pants were presented with a web form that had a 3x3 matrix
showing three ratings each for three products. Participants
were told that the ratings came from three different sources
and were normalized to a scale of 1 to 5, with 5 being best
and 1 being worst. Each participant was asked to evaluate
the products for purchase by ranking the products in the or-
der of their preference. A total of 14 participants, predomi-
nantly students in the Department of Computer Science and
Engineering at the University at Buffalo, participated in the
experiment.

To ensure a roughly predictable ordering from partici-
pants, ratings for each product were generated uniformly
at random with the following constraints: Ratings for one
of the three products (henceforth termed ‘A’) relative to a
second product (termed ‘B’) had to include one extremely
favorable comparison for A (one source gave A a rating at
least 1 higher than B), one somewhat favorable comparison
(one source gave A a rating at least as high as B but no
more than 1 higher), and one disfavorable comparison (the
final source gave A a rating worse than or equal to B but no
more than 1 worse). Similar comparisons also had to hold
between B and the final product (C). These constraints were
designed to elicit a ranking of ‘A’, ‘B’, and ‘C’ from partic-
ipants deciding based on either majority vote or based on
the average of the three ratings.

Participants were asked to complete either one or five
rounds of survey, with each round consisting of four trials.
A single trial consisted of a single ranking task. The first
Certain trial in each round served as a control: The ma-
trix shown was generated exactly as described above. The
remaining trials in each round each evaluated a single rep-
resentation of uncertainty. In these trials, base data gener-
ation followed an identical process. However, in each trial,
one of the following representations of uncertainty was used
to annotate a small number (2-4) of product rating values.
(1) Asterisk: Some ratings were marked with an asterisk
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Figure 2: Probability of the user’s selection agreeing
with the BestOf3 ranking.

(e.g., 4.5*) and participants were informed that these values
were uncertain. (2) Colored text: The text of some ratings
was colored red (e.g., 4.5) and participants were informed
that these fields were uncertain. (3) Confidence interval:
Some ratings were annotated with ±X where X ∈ [0.5, 1.5]
(e.g., 4.5 +/- 0.5) and participants were informed that the
value for those fields could range over the indicated interval.
(4) Color coding: The cells containing some ratings were

given a red background (e.g., 4.5 ) and participants were
informed that these fields were uncertain.

Interactions with the web-form — such as product selec-
tion, re-ordering the product list, and submitting the par-
ticipant’s final order — were logged along with timestamps.
In addition to interactions with the web form, the exper-
iment also used a think-aloud protocol: Participants were
asked to verbalize their thought process while performing
the task. Audio logs were transcribed and the anonymized
transcriptions were tagged and coded for analysis.

4. EFFICIENCY AND EFFECTIVENESS
The two primary questions that we sought to answer for

each of the four representations of uncertainty were (1) Is
the representation effective at communicating uncertainty,
and (2) What is the cognitive burden of interpreting the rep-
resentation? Concretely, we identified at least three distinct
behavioral responses to uncertainty in the data presented,
suggesting differences in the efficacy of each representation.
We also noted that all four representations of uncertainty
required a similar amount of decision time, suggesting that
all four representations impose similar cognitive burdens.

Effectiveness. The data presented to users was carefully
selected to have two properties: First, each dataset was se-
lected to elicit a specific ordering, regardless of whether par-
ticipants made their choice based on the best two ratings or
based on the average of all three ratings. We term this rank-
ing order BestOf3. Second, uncertainty annotations were
applied to specific cells of the table specifically to create
ambiguity. As a consequence, we would expect users who
chose to disregard uncertain data entirely to pick orderings
effectively at random relative to BestOf3.

In short, if a representation of uncertainty is effective at
communicating uncertainty, we would expect to see a more
random product ranking. In the confidence interval repre-
sentation — where bounds were not wide enough to prompt

a significant level of ambiguity — we would expect to see
ranking close to BestOf3.

Figure 2 summarizes our results, showing the probabil-
ity of agreement between the participant-selected ordering
and the BestOf3 ordering. Standard deviations are com-
puted under the assumption that agreement with BestOf3
follows a Beta-Bernoulli distribution. A 16.7% agreement
would indicate a purely random ordering. The ‘certain’, de-
terministic baseline shows a consistent, roughly 85% agree-
ment with BestOf3, and as predicted, so does the confi-
dence interval presentation (89%). Both colored text and
color coding significantly altered participant behavior (45%
and 56% agreement with BestOf3). Asterisks were not as
effective at altering participant behavior (73% agreement).
This is consistent with colored text and color coding signal-
ing significant errors, while asterisks signal caveats or minor
considerations on the values presented.

Efficiency. We measure time taken for each form of
uncertainty as a proxy for cognitive burden. Figure 3 il-
lustrates time taken by users to complete each individual
ranking task. We distinguish between the first round, where
participants initially encounter the task and representation,
from subsequent rounds where they are already familiar with
the task. As seen in Figure 3a, participants spent signifi-
cantly more time familiarizing themselves with the overall
ranking task than with any of the specific representations
of uncertainty. Furthermore, time taken per representation
was relatively consistent across all forms of uncertainty; The
slowest two in Figure 3b trials were both deterministic.

5. DISCUSSION
Participants were encouraged to verbalize their thought

process. Based on this feedback, we were also also able
to make several qualitative observations. In general partici-
pants considered consistency in the rating sources and prod-
ucts as a secondary source of feedback about data quality.
For example, if Source 1 had low ratings for all three prod-
ucts, then some participants were more likely to discard it
as uninformative and base their rating solely on the other
two sources. If the range of ratings for a product was wide
(4.5, 2, 1) then the product was considered unreliable by a
few participants. Most of the participants explicitly stated
that they were choosing based on the best two of, or the
average of the three ratings.

Approximately half of the participants conveyed a strong
negative emotional reaction to the color coding representa-
tion. Reactions ranged from participants who expressed a
feeling of negative surprise on first seeing the value to partic-
ipants indicating that the red boxes made them scared. By
comparison, several participants suggested feelings of com-
fort associated with the additional information that the con-
fidence interval supplied.

In addition to strong negative emotional responses, most
participants indicated that they were ignoring values with a
red background, except as a tiebreaker. This was true even
for several participants who did not react in the same way
toward the red text or asterisk representations.

Most participants exhibited risk-averse behavior. Given
two similar choices, many participants stated a preference
for products with more consistency in their ratings, as well
as for products that did not include uncertain ratings. A
frequent exception to this pattern was cases where uncertain
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Figure 3: Time taken per form of uncertainty. Graphs show cumulative distributions per-trial.

values appeared at the low end of the rating spectrum —
several participants indicated that the true value of a low,
uncertain rating could only be greater than the value being
shown.

In several instances, participants requested additional in-
formation, most frequently with the asterisk representation.
It is possible that this is an artifact of the experimental pro-
tocol; The asterisk was the first form of uncertainty that
many participants encountered. However, based on our ef-
ficacy analysis, it may also be the case that participants
assumed that this representation signaled less significant er-
rors. In future trials, we will use a random trial order and
evaluate whether some representations are better at prompt-
ing users to seek out additional information.

For confidence bounds, users appeared to react to the pre-
sented uncertainty in one of two ways. One group appeared
to first evaluate whether the uncertainty would make a sig-
nificant impact on their deterministic ranking strategy (best
2 of 3 or average). The other group adopted a pessimistic
view and plugged the lower bound into their determinis-
tic strategy as a worst-case. For the experimental protocol
used, both strategies typically resulted in the same outcome.

6. CONCLUSIONS AND FUTURE WORK
Data quality is becoming an increasingly painful challenge

to scale. As a result of issues ranging from low-quality source
data [8, 14, 11] to time-constrained execution [4, 9], the fu-
ture is clear: Before long, imprecise database query results
will be common. It is thus imperative that we learn how
to communicate uncertainty in results effectively and effi-
ciently. We presented our initial exploration of this space:
a user study that examined four approaches to presenting
attribute-level uncertainty. We plan to continue these efforts
by exploring (1) other types of uncertainty in relational data
(row-level and open-world), (2) qualitative feedback such as
explanations [14], (3) giving the user mechanisms to dynam-
ically control the level and complexity of uncertainty repre-
sentation being shown, and (4) incorporating our findings
into the Mimir on-demand curation system [14, 11].
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