Data Quality for Semantic Interoperable Electronic Health Records

Shivani Batra & Shelly Sachdeva Jaypee Institute of Information Technology University, Sector-128, Noida, India

Workshop on Quality in Databases (QDB 2016) in conjunction with VLDB 2016

Presentation Outline

- Motivation
- Standardized Electronic Health Records (EHRs)
- Layered Approach
- Archetype Authoring Process
- Proposed Approach
- AEAV- Archetype based Entity Attribute Value model
- Physical Storage
- Timeliness
- Conclusions

• Data misinterpretation

Hospital Name	Body Temperature
APPOLO	104
FORTIS	40

- Data misinterpretation
- Distinct set of attributes for same medical concept

- Data misinterpretation
- Distinct set of attributes for same medical concept
- Distinct local schema

Systolic Pressure **Hospital C** Blood Pressure →Diastolic Pressure Diastolic **Mean Arterial** Systolic →Mean Arterial Pressure **Pulse** Pressure **Hospital C Hospital A Hospital B** *Systolic Systolic* Mean Arterial Diastolic **Diastolic** Mean Arterial 5

 Systolic	Diastolic		
		_	

Hospital A

Hospital B Mean Arterial

- Data misinterpretation
- Distinct set of attributes for same medical concept
- Distinct local schema } <u>Generic Structure</u>
- Timeliness } Physical Organization

Standardized Electronic Health Records

Layered Approach for Standardization

Archetype Authoring Process

Solution to Challenges Identified

#	`Challenge	Proposed Solution
1	Data	• Solved through adoption of archetype based system.
	Misinterpretation	• Using archetypes aids in capturing maximum possible information about medical concept.
		• Archetypes provide links to standard medical terminologies such as, SNOMED-CT and LOINC.
2	Distinct set of	• Archetypes define standard set of attribute for a medical concept.
	attribute for same medical concept	• Archetypes following one standard can be transformed to archetype following another standard using online tools such as, POSEACLE convertor.

Proposed Approach

EAV- Entity Attribute Value model

Relational Model

Entity	Attribute1	Attribute2
Entity_id1	1	2
Entity_id2	3	null
Entity_id3	null	4

EAV Model

Entity	Attribute	Value
Entity_id1	Attribute1	1
Entity_id1	Attribute2	2
Entity_id2	Attribute1	3
Entity_id3	Attribute2	4
Entity_id3	Attribute3	5

<u>AEAV-Archetype based Entity Attribute</u> Value model

Entity	Archetype_Name	Attribute_Name	Value_int
1	Blood Pressure	Systolic	105
1	Blood Pressure	Diastolic	85
2	Body Weight	Weight	70
3	Body Mass Index	dy Mass Index Body Mass Index	
2	Blood Pressure	Systolic	125
2	Blood Pressure Diastolic		100
4	Body Weight	Weight	65

Entity	Archetype_Name	Attribute_Name	Value_string	
2	Blood Pressure	Comment	High	
1	Blood Pressure	Comment	Normal	

				Attribute_Name	Coded Value
			1	Systolic	001
				Diastolic	002
				Mean Arterial	003
Mapping A	rchetype Name	_		Pulse Pressure	004
Archetype_Name	Coded Value	Index		Comment	005
Blood Pressure	001				
Body Weight	002			Attribute_Name	Coded Value
Body Mass Index	003			Weight	001
				Comment	002
				Attribute_Name	Coded Value
				Body Mass Index	001

- 1. Convert numeric code of Archetype_Name into equivalent 8 bit binary code.
- 2. Append '00000000', i.e. eight 0 bits to the end of 8 bit Archetype_Name code to make it a 16 bit code.
- 3. Convert the 16 bit code into an equivalent decimal and replace existing Archetype_Name value with this new value.
- 4. Add decimal values of Archetype_Name and Attribute_Name columns and replace Archetype_Name and Attribute_Name columns are with one column named ArchAtt containing this summation value.

Entity	Archetype	Attribute	Value_				
	_Name	_Name	int		Entity	ArchAtt	Value_int
1	001	001	105		1	257	105
1	001	002	85		1	258	85
2	002	001	70		2	513	70
3	003	001	40		3	769	40
2	001	001	125		2	257	125
2	001	002	100		2	258	100
4	001	001	65		4	257	65
				-			
Entity	Archetype	Attribute	Value_				
	_Name	_Name	string		Entity	ArchAtt	Value_string
2	001	005	High		2	261	High
1	001	005	Normal		1	261	Normal

Mapping Attribute Name

<u>AEAV- Archetype based Entity Attribute</u> <u>Value model</u>

Entity	Archetype _Name	Attribute _Name	Value_ int	
1	001	001	105	
1	001	002	85	
2	002	001	70	
3	003	001	40	
2	001	001	125	
2	001	002	100	
4	001	001	65	

Entity	ArchAtt	Value_int
1	257	105
1	258	85
2	513	70
3	769	40
2	257	125
2	258	100
4	257	65

Entity	Archetype	Attribute	Value		-	
·	_Name	_Name	string	Entity	ArchAtt	Value_string
2	001	005	High	2	261	High
1	001	005	Normal	1	261	Normal

Entity	ArchAtt	Value_Int
1	257	105
2	257	125
4	257	65
1	258	85
2	258	100
2	513	70
3	769	40

Solution to Challenges Identified

#	`Challenge	Proposed Solution
1	Data	• Solved through adoption of archetype based system.
	Misinterpretation	• Using archetypes aids in capturing maximum possible information about medical concept.
		• Archetypes provide links to standard medical terminologies such as, SNOMED-CT and LOINC.
2	Distinct set of	• Archetypes define standard set of attribute for a medical concept.
	attribute for same medical concept	• Archetypes following one standard can be transformed to archetype following another standard using online tools such as, POSEACLE convertor.
3	Distinct Local	• Proposed generic schema, AEAV handles this issue.
	Schema	• Schema is capable to capture all existing and future data requirements without making any changes in schema.
4	Sparseness	• AEAV doesn't store any null value.
		• AEAV reduces space by eliminating need of storing long archetype and attributes
		names.

Physical Organization (Row & Column)

Entity	ArchAtt	Value_Int
1	257	105
2	257	125
4	257	65
1	258	85
2	258	100
2	513	70
3	769	40

Dow																					
<u>NOW</u>								~							100	•					
	1	257	105	2	257	125	4	257	65		258	85	2	258	100	2	513	70	13	1769 '	40
Organization	-			_	_0.		-		ů	-			_		- • •		• - •		-		
0-0	_																				

Column			_	_													_				
Column		-			-		-														
	1	2	4	1	2	2	3	257	257	257	258	258	513	769	105	125	65	85	100	70	40
Organization	-	_	-	_	-	-	l C	-07	-07		200	200	010					00			••
						-													-		-

Timeliness

			Time Tal	ken (seconds)	
ID	Task	Task Description	Row-Oriented	Column-Oriented	
			Storage	Storage	
		Extracting details of Systolic pressure	0.377	0.359	
Q1	Extracting Complete	Extracting Systolic pressure, Diastolic pressure and overall interpretation of all patients	0.618	0.419	
	Column Details	Extracting ALP, AST, ALT, Albumin and Globulins of all patients	5.429	0.577	
		Extracting data of all patients	63.684	1.482	
	Extracting Complete Row	Extracting data of all patients having Total T3 greater than 2	0.499	0.374	
Q2	Details	Extracting data of all patients having Systolic pressure greater than 100, Diastolic	0.755	0.569	
		pressure less than 100 and overall interpretation as Hypotension	0.755		
		Extracting Systolic pressure, Diastolic pressure and overall interpretation of all patients	2 805	1.001	
03	Extracting Selected Column	having Patient ID greater than 4500 and Systolic pressure greater than 100	2.803	1.091	
Ų3	Details of Selected Rows	Extracting ALP, AST, ALT, Albumin and Globulins of all patients having Patient ID less	1 17	3 062	
		than 5000 and AST greater than 100	4.47	5.902	
	Doutomaina Statistical	Extracting the average value of albumin among people tested for Liver	1.36	0.687	
Q4	A polycic	Extracting number of patients tested for BP and diagnosed with Hypotension	0.396	0.232	
	Analysis	Group the patients tested for Liver according to Albumin values	12.635	0.952	
Q5	Adding data	Insert data of one patient	0.774	0.234	
Q6	Deleting data	Delete data of one patient	0.372	0.218 17	
Q7	Modifying data	Update data of one patient	0.315	0.297	

<u>Timeliness</u>

Conclusions

- supports syntactic, structural and semantic interoperability,
- refers a generic schema capable of capturing all current and future data requirements without making any changes in schema,
- eliminates the need of storing null values to save storage space,
- supports storage of heterogeneous data,
- improves search efficiency by utilizing optimization techniques of MonetDB.

<u>References</u>

- 1. Atalag, K. and Bilgen, S. Multi-Level Modeling and the Role of Archetypes in the Design of Health Information Systems: A Modeling Example in Endoscopy. *HIBIT '07 Proceedings of the International Symposium on Health Informatics and Bioinformatics*, May2007.
- 2. Atalag, K. and Yang, H.Y. From openEHR domain models to advanced user interfaces: a case study in endoscopy. *In Health Informatics New Zealand Conference*, November 2010.
- 3. Beale, T. and Frankel, H. The openEHR Reference Model Extract Information Model. The openEHR release, 1, 2007.
- 4. Beale, T. and Heard, S. openEHR architecture overview. openEHR Foundation. London, UK, 2008.
- 5. Beale, T. and Heard, S. *The openEHR archetype modelarchetype definition language ADL 1.4.* openEHR release, 1(2), 2008.
- 6. CEN European committee for Standardization: <u>www.cen.eu</u> [online] (Accessed 01/16).
- 7. Clinical Knowledge Manager: <u>http://www.openehr.org/ckm/</u> [online] (Accessed 01/16).
- 8. Costa, C.M., Menárguez-Tortosa, M. and Fernández-Breis, J.T. Clinical data interoperability based on archetype transformation. *Journal of biomedical informatics*, 44(5), 2011, 869-880.
- 9. Dinu, V. and Nadkarni, P. Guidelines for the effective use of entity-attribute-value modeling for biomedical databases. *International journal of medical informatics*, 76(11), 2007, 769-779.
- 10. Health Level 7 International Homepage: <u>www.hl7.org</u> [online] (Accessed 02/16).
- 11. International Health Terminology Standards Development Organization. Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT). Available from: http://www.ihtsdo.org/snomed-ct/ [online] (Accessed 04/16).
- 12. ISO organization: www.iso.org [online] (Accessed 01/16).
- 13. Logical Observation Identifiers Names and Codes LOINC: https://loinc.org/ [online] (Accessed 04/16).
- 14. openEHR Foundation: www.openehr.org [online] (Accessed 01/16).
- 15. Patrick, J., Ly, R. and Truran, D. Evaluation of a persistent store for openEHR. HIC 2006 and HINZ 2006: Proceedings, 2006, 83-89.
- 16. Sachdeva, S. and Bhalla, S. Semantic interoperability in standardized electronic health record databases. *Journal of Data and Information Quality (JDIQ)*, 3(1), 2012, 1-37.
- 17. Sachdeva, S., Yaginuma, D., Chu, W., & Bhalla, S. Dynamic generation of archetype-based user interfaces for queries on electronic health record databases. *In Databases in Networked Information Systems, Springer Berlin Heidelberg*, 2011, 109-125.
- 18. UCI Machine Learning Repository: Liver Disorders Data Set: <u>https://archive.ics.uci.edu/ml/datasets/Liver+Disorders</u> (Accessed 06/15).
- 19. UCI Machine Learning Repository: Thyroid Disease Data Set: https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease (Accessed 06/15). 20

