Data Cleaning in the Wild: Reusable Curation Idioms from a Multi-Year SQL Workload

Shrainik Jain and Bill Howe University of Washington

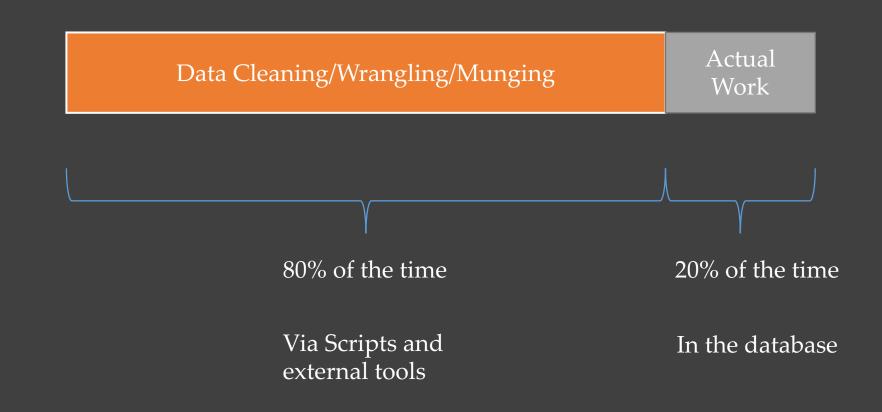
Outline

Motivation

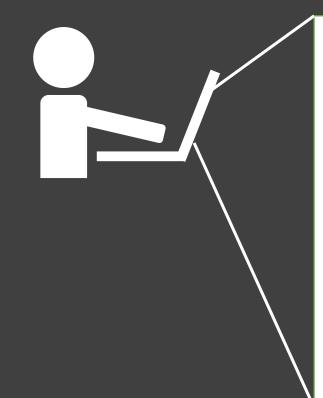
• SQLShare System

- Database as a cloud service
- Multi year SQL workload
- SQL idioms for Data Cleaning
- Automatically identifying the idioms
 - Using word vectors and LSTM models
- Future work

Typical Data Processing Pipeline



You should use a database!



> ./run-experiment-X
Running Experiment X ... ()
3GB written to Output.csv

> python my_fav_script.py Output.csv Error: Out of Memory 🙁

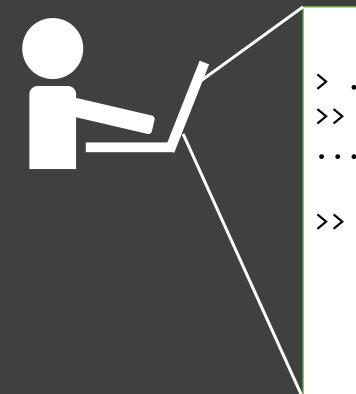
Friend in the CS dept.

> brew install TheirSQL
... wait some time.
... wait some time.
... wait some time.
Dependency missing. 😕

- > brew install dependency
- > brew install TheirSQL

> ./TheirSQL.exe
>> Create database XYZ
>> Create TABLE X (, , ,)
>> Insert into X From Output.csv
... wait some time.
Column type mismatch. ③
>> exit

> vim my_fix_script.py
> python my_fix_script.py Output.csv



> ./TheirSQL.exe
>> Insert into X From Output.csv
... wait some time.
>> Select * from X

Time to first query: Too Long!

Why not just scripts and files?

Hypothesis: Databases aren't the problem, it's how we tell people to use them: No messy data allowed.

But, "clean data is like clean money – it doesn't exist"

Key Idea: Embrace messy data; clean it up on the go

Outline

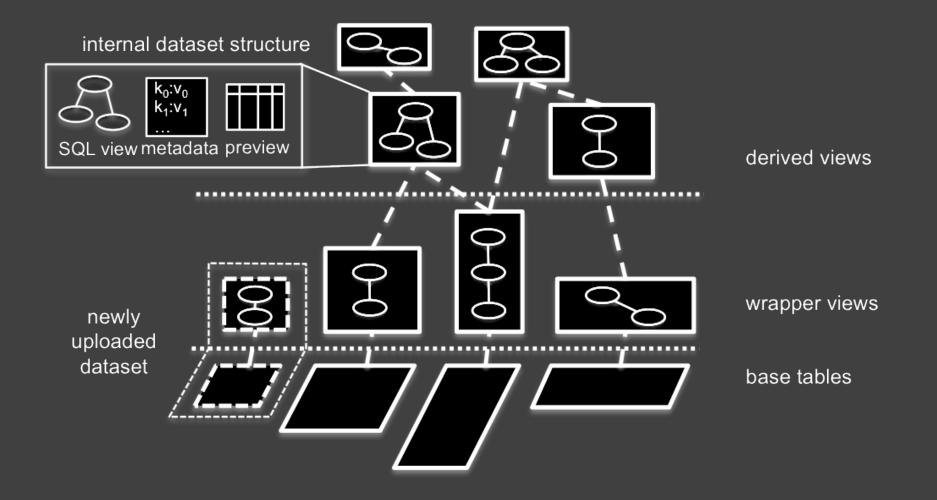
- Motivation
- SQLShare System
 - Database as a cloud service
 - Multi year SQL workload
- SQL idioms for Data Cleaning
- Automatically identifying the idioms
 - Using word vectors and LSTM models
- Future work

Solution: SQLShare Database-as-a-Service ^[1]

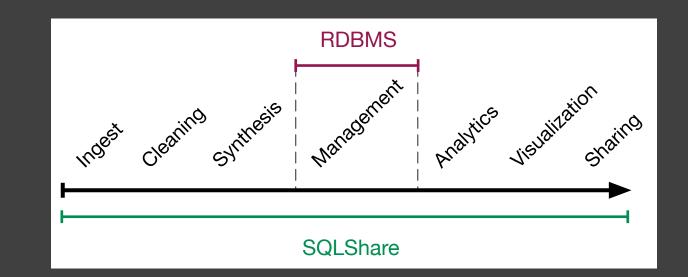
- SQLShare Design Principles:
 - Upload should never fail
 - Relaxed schemas
 - Minimal database jargon
 - Unify views and tables
 - Data sharing should be a first-class operation
 - Full SQL support

[1] Shrainik Jain et al., SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment. In proceedings of the 2016 ACM SIGMOD International Conference on Management of Data

Datasets in SQLShare



Summary: One system for all of data lifecycle



SQLShare, empowers novice users by providing a system which handles use-cases across the data lifecyle.

A query workload to inform database research

- SQLShare Corpus data release: <u>http://bit.ly/sqlshare-data</u>
- A dataset of real handwritten queries.

Measure	Value
Queries	24275
Views	4535
Tables	3891
Columns/Table	19
Users	591

Where does data cleaning come into the picture?

Our goal: SQL recommendation to assist with in-database cleaning.

Current progress: Extract cleaning idioms from the corpus to measure their frequency.

Outline

- Motivation
- SQLShare System
 - Database as a cloud service
 - Multi year SQL workload
- SQL idioms for Data Cleaning
- Automatically identifying the idioms
 - Using word vectors and LSTM models
- Future work

Idioms from the workload

Idiom	Datasets
Horizontal recompositioning	210
Vertical recompositioning	100
Column Rename	720
NULL Injection and Type Coercion	420

Total Datasets: 4535

Horizontal recompositioning

Example: SELECT

*

FROM [che].[m1]
FULL OUTER JOIN [che].[m3]
ON [che].[m1].m1_loci_id = [che].[m3].m3_loci_id

Curation on Ingest:

• Automatic join finding using measures like jaccard similarity ^[1]

Vertical recompositioning

Example: SELECT

*

FROM [gbc3].[sqlshare-exp.txt] UNION ALL SELECT

*

FROM [gbc3].[gen_sqlshare.txt]

Curation on Ingest:

- Learn schema alignment heuristics from the data,
- Applying schema matching methods, UNION ALL queries can be automatically identified ^[1]

Column rename

Example: SELECT

column2 AS sp, column3 AS SPID, column4 AS ProtFROM [userX].[uniprotolyblastx2.tab]

Curation on Ingest:

- Non-Trivial.
- Identifying is easy, suggesting valid renames can be ambiguous.
 - One possible way could to be calculate the earth mover distance between the histograms of column values and suggest rename to column with which this distance is least.

NULL injection and Type Coercion

Example: SELECT

CASE

WHEN [400 avg NSAF] = 'N/A' THEN NULL ELSE [2800 avg NSAF]/[400 avg NSAF]

END FROM [emma].[NSAFwithAve]

Curation on Ingest:

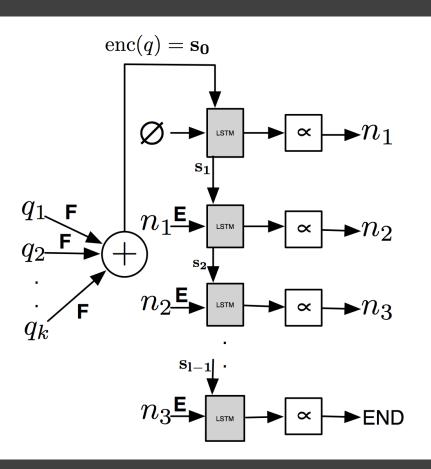
• Infer data types based on a prefix of rows, and create two table. The first table corresponds to the predicted type, and the second table holds non-conforming rows and has every column typed as a string. Finally, create a view to union the 2 tables and is presented to the user, along with the information about the 2 base tables.

Outline

- Motivation
- SQLShare System
 - Database as a cloud service
 - Multi year SQL workload
- SQL idioms for Data Cleaning
- Automatically identifying the idioms
 - Using word vectors and LSTM models
- Future work

Identifying Query Idioms

- Stack overflow questions can be used to train a neural encoderdecoder model using LSTM networks[1]
 - Embedding SQL queries in ndimensional vector spaces based on query semantics (description).
 - Use a clustering algorithm to find similar queries.



Identifying Query Idioms

select species, subspec, name, bodymass from [user450].[birds.csv] where id > = 1 and id <= 20

select ID, Strain, sex, age, brainwt, bodywt, Res1_sex FROM [user319].[Lincoln University Sample Data-2.csv] where sex = 'F' Or brainwt < 300 and bodywt > 530

select Time,Mode,Count,Total,S41,S42,S43 FROM [user250].[Old SPR Data] WHERE S41>0 and S41<1000 and Count = 300

select gig1 **as** GigSeq, gig2 **as** OlySeq, gig3 **as** PercID, gig4 **as** alignlength, gig5 **as** mismatches FROM [user10].[gigastolyblast.tab]

select [entry no.] **as** [d1 entry no.], [protein] **as** [d1 protein], [protein probability] **as** [d1 protein probability] from [user212].[table_interact-2015_may_6_bacteria_detection17.prot.xls]

Select [protein description] **as** [i2.2 protein description], [percent coverage] **as** [i2.2 percent coverage], [tot indep spectra] **as** [i2.2 tot indep spectra] from [user212].[table_interact-2015_may_6_bacteria_detection66.prot.xls]

Outline

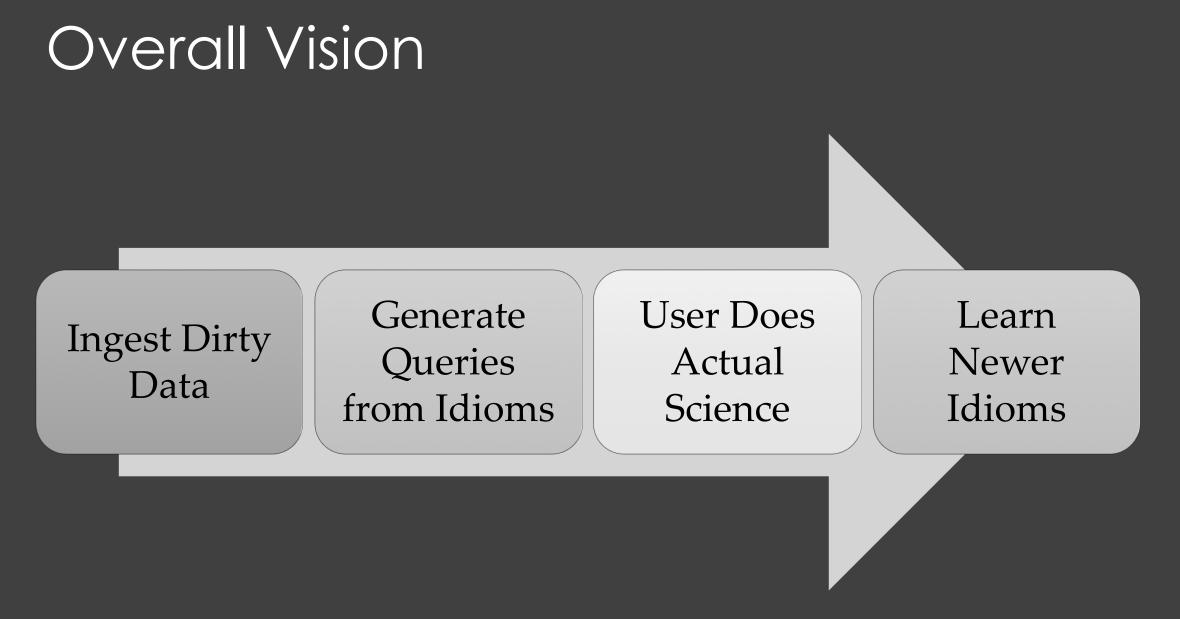
- Motivation
- SQLShare System
 - Database as a cloud service
 - Multi year SQL workload
- SQL idioms for Data Cleaning
- Automatically identifying the idioms
 - Using word vectors and LSTM models
- Future work

Auto-generating cleaning queries

- What makes a query a "cleaning query"?
- One model: The ones near the root of a deep tree of views.
- Another factor: Cleaning queries are easier to generalize and reuse across users/domains. They involve fewer domain-specific literals, query structures, etc.
- "We're not sure yet"

Auto-generating generic queries

- Using metadata (inferred schema, other tables, past queries) as features, find the right query idiom.
- For a newly uploaded dataset: use metadata to find the class of queries which fit this dataset.
- Synthesize query.



Summary

- Relaxed Schemas afford cleaning via SQL.
- Data cleaning can be pushed to Databases, rather than being a prerequisite.
- Automating some cleanup operations within Database seems possible.

SQLShare: <u>http://bit.ly/sqlshare-about</u>
 Data Release: <u>http://bit.ly/sqlshare-data</u>