Skip to content. | Skip to navigation

Personal tools
You are here: Home Publications Evaluation of Real-time Traffic Applications based on Data Stream Mining


Prof. Dr. S. Decker
RWTH Aachen
Informatik 5
Ahornstr. 55
D-52056 Aachen
Tel +49/241/8021501
Fax +49/241/8022321

How to find us

Annual Reports





Evaluation of Real-time Traffic Applications based on Data Stream Mining

Year 2014

Traffic management today requires the analysis of a huge amount of data in real-time in order to provide current information about the traffic state or hazards to road users and traffic control authorities. Modern cars are equipped with several sensors which can produce useful data for the analy- sis of traffic situations. Using mobile communication technologies, such data can be integrated and aggregated from several cars which enables intelligent transportation systems (ITS) to monitor the traffic state in a large area at relatively low costs. However, processing and analyzing data poses numerous challenges for data management solutions in such systems. Real-time analy- sis with high accuracy and confidence is one important requirement in this context. We present a summary of our work on a comprehensive evaluation framework for data stream-based ITS. The goal of the framework is to identify appropriate configurations for ITS and to evaluate different mining methods for data analysis. The framework consists of a traffic simulation software, a data stream management system, utilizes data stream mining algorithms, and provides a flexible ontology-based component for data quality monitoring during data stream processing. The work has been done in the context of a project on Car-To-X communication using mobile communication networks. The results give some interesting insights for the setup and configuration of traffic information systems that use Car-To-X messages as primary source for deriving traffic information and also point out challenges for data stream management and data stream mining.


G. Cervone, J. Lin, N. Waters (eds.): Data Mining for Geoinformatics: Methods and Applications, pp. 83-103, Springer, 2014.

Published in

Data Mining for Geoinformatics: Methods and Applications , by G. Cervone, J. Lin and N. Waters , p. 83-103 ; Springer , US .

Document Actions