Skip to content. | Skip to navigation

Personal tools
You are here: Home Teaching SS 21

Courses offered in SS 21

  • Lecture: CSCW, Groupware und Blockchain

  • This lecture will teach concepts, methods and solutions for supporting cooperative work and processes. This includes document management systems, video conferencing, shared document editing, and workflows. In addition, we will introduce the basics of blockchain technology and applications based on it, such as cryptocurrencies, certifications, supply chains. NFTs, etc.

  • Lecture: Social Computing

  • Social Computing is an area of computer science that is concerned with the intersection of social behavior and computational systems. It is based on creating or recreating social conventions and social contexts through the use of software and technology. We will address social computing infrastructures, social computing engineering processes, computational social science, in particular recommender systems and community detection, crowdsourcing, collective intelligence, the dark web, mixed reality, mobile social computing, science 2.0 and advanced topics.

  • Lecture: Bridge Course Databases

  • Lecture: Datenbanken und Informationssysteme

  • Die Vorlesung gibt einen einführenden Überblick über Datenbanken und ihre Verwendung in Informationssystemen. Wesentliche Ziele der Veranstaltung sind das Kennenlernen verschiedener bekannter Datenmodelle, wobei der Schwerpunkt auf dem relationalen Modell liegt. Es werden theoretische sowie praktische Grundlagen der Datenmodelle und zugehöriger Anfragesprachen vermittelt. Außerdem werden Modellierungs- und Entwurfstechniken für das relationale Modell vorgestellt und Einblicke in grundlegende Datenbanksystemtechniken, z.B. die Transaktionsverwaltung, gegeben.

  • Proseminar: Algorithmen für die Entdeckung von Communities in sozialen Netzwerken

  • In diesem Proseminar werden sogenannte Overlapping Community Detection Algorithms (OCDA) mittels eines multi-perspektivischen Kriterienkatalogs untersucht. Neben klassischen informatischen Kriterien wie Korrektheit, Laufzeit und Speicherplatzverbrauch werden Kriterien wie Genauigkeit und Güte der gewonnen Information, aber auch die Anwendbarkeit auf bestimmte Formen sozialer Netzwerke (assoziativ und dissassoziativ) eingesetzt. Die Bewertungen werden beispielsweise durch Spinnendiagramme visualisiert. Das Proseminar bietet neben der üblichen Einführung in das wissenschaftliche Arbeiten spannende neue Formen des kollaborativen Forschen und Publizieren auf dem Web. So werden die fachlichen Themen in Zweiergruppen mittels einer Wiki-Buch Plattform erarbeitet. Zusätzlich werden Gruppen zum fachlichen Begutachten, zum Web-Design und zur Animation von Algorithmen gebildet. Die Ergebnisse des Proseminars werden daher nicht in einer Schublade verschwinden, sondern auf dem Web als Open Content publiziert.

  • Seminar: Web Science Seminar

  • Web Science has become an interdisciplinary study field between computer science, mathematics, sociology, economics, and other disciplines. This seminar researches advanced Web Analytics and Web Engineering topics in Web Science probably leading to master thesis topics for excellent students. Topics include: network evolution models and network dynamics, (overlapping) community detection, recommender systems, adaptation and personalization in Web Environments, the Educational Web, Web Trust & Credibility, Web Protocols, Peer-to-Peer Networking for Web Clients, Web-based Software Development Models, particular Web Development methods like Web Components and many more. Students do not only learn to write and present scientific papers but also to peer review them. Students will be assigned to a supervisor helping the student through all steps like literature research, seminar paper and seminar presentation.

  • Seminar: Data Science in Medicine

  • Health data analytics is one of the main drivers for the future of medicine. Various sources of big data, including patient records, diagnostic images, genomic data, wearable sensors, are being generated in our everyday life by health care practitioners, researchers, and patients themselves. Data science aims to identify patterns, discovering the underlying cause of diseases and well being by analyzing this data.

  • Seminar: Privacy and Big Data

  • This seminar is about new and emerging approaches to adjust and balance privacy and utility in data intensive applications, such as information retrieval, data mining and personalisation. These new approaches have the potential to enable a new generation of privacy-enabled services which are not focused on maximizing the collection of user data. Instead these new approaches enable user privacy under different threat models, such as protecting the identity of individual users when querying aggregated data, or preventing leakage of query patterns when users retrieve data from a database. As a result, these new approaches may help businesses in their compliance with increasingly regulatory trust and reinforce user trust, while enabling new business models at the same time.

  • Practical course (basic level): Mixed Reality Lab

  • Mixed Reality is a continuum of spatial computing experiences on virtual, augmented and extended reality devices, such as the MS Hololens, the HTC Vive, and mobile phones. In this lab, we learn the basics of mixed reality software development in hands-on lessons with practical tasks. The lab contains a small independent project student groups can propose and work on.

  • Practical course (advanced level): Semantic Data Integration

  • This lab deals with data management technologies including big data frameworks, architectures for data and service ecosystems, modeling languages and collaborative data modeling environments. We develop advanced data integration workflows in concrete use cases.