Direkt zum Inhalt | Direkt zur Navigation

Benutzerspezifische Werkzeuge
Sie sind hier: Startseite Theses Privacy Attack on Social Networks Using Network Embeddings


Prof. Dr. S. Decker
RWTH Aachen
Informatik 5
Ahornstr. 55
D-52056 Aachen
Tel +49/241/8021501
Fax +49/241/8022321

How to find us

Annual Reports





Privacy Attack on Social Networks Using Network Embeddings

Thesis type
  • Master
Status Running

Abstract. A company that runs a social network trains a node embedding on the network where each account is represented by one node. One user deletes his account. Thus, the company is legally required to remove all private information of that user. This includes the node associated with the user’s account and the vector representation of that node that is generated by the embedding. The company, however, does likely not delete the vector representations of the other nodes even though the removed node was used during training of these. Is it possible to identify the neighbors of the removed node? Which kinds of neighbors can be identified best, which cannot be identified? First results suggest that the identification of neighbors works well for some kind of nodes and is more difficult for others.