IMMoA 2012 Workshop

Privacy Preservation for Location-Based Services Based on Attribute Visibility

Masanori Mano, Xi Guo, Tingting Dong, Yoshiharu Ishikawa

Outline

- Background
- Motivation
- Related work
- Overview of the approach
- Anonymization algorithm
- Experimental evaluation
- Conclusions and future work

Background

Location-Based Services (LBSs)

LBSs are useful and popular

Provide services to mobile users according to their geographical locations

- Show nearby cafés, gas-stations, restaurants....
- Compute the best route to the destination Google
- Send coupons provided by nearby restaurants

foursquare

O

Technologies Supporting LBSs

- Positioning technology: obtain users' locations
 - Example: GPS chips/satellites, cellphone triangulation, ...
- Networking technology: access to Internet everywhere
 - Example: 3G, WiFi, ...
- Database technology: develop colorful applications

Privacy Issue

- However, the LBS providers might be un-trusted or even adversaries
 - Identity (E.g., name, phone number, IP address, ...)
 - Sensitive location (E.g., home, night club, clinic, …)
 - Malicious usage (E.g., keep and sell users' logs, track users' movements, ...)

Protect Privacy

Anonymizer, a trusted third party server

- Place in-between users and LBS providers
- Protect privacy by anonymizing users
- Spatial cloaking [MobiSys03, VLDB06, WWW08]

Spatial Cloaking

- Anonymizer groups k near users and send the group information to LBS providers
 - Prevent the adversary from identifying an individual with probability above 1/k
 - Guarantee service quality by limiting the size of cloaked

Motivation

Personalized LBSs

- LBSs typically utilize user locations
 - Applications
 - Show restaurants nearby
 - Compute the best route to the destination
 - Protect privacy
 - Spatial cloaking
- Personalized LBSs utilize both locations and profiles
 - Profile: age, sex, occupation,
 - Applications
 - Mobile shopping
 - Mobile advertising
 - Protect privacy ?

.

Anonymizer

Personalized LBS Example

- Location-based advertising (LBA)
 Provide local advertisements to appropriate persons
 - Use location information to attract nearby users
 - Use profiles to avoid spam that make users unhappy

Privacy Issue in Personalized LBSs (cont.)

However, the adversary can distinguish users

Associate users with profiles by watching the target area

Our Idea to Protect Privacy

Group the near users with similar profiles

- Reduce the identification probability
- Guarantee the quality of service (unchanged size of the cloaked region)

Related Work

Protect Privacy in LBSs

- In traditional LBSs
 [MobiSys03], [VLDB06], [WWW08], [TMC08]
 - Spatial cloaking

- Construct cloaked regions that contain near users
- In personalized LBSs [MDM08]
 - Most anonymization methods do not consider users' profiles
 - One exception is [MDM08], but it does not consider the attribute observability
 - Adversaries can associate profiles with users by watching

Personalized Anonymization

- Users specify their preferences of the attribute disclosure levels [SIGMOD06]
 - Static databases
 - Construct a hierarchical taxonomy for each attribute

- Our work
 - Spatial databases
 - Service request stream
 - Moving users
 - Hierarchical taxonomy

Details of the Approach

Attribute Observability

- Observability measures the easiness that adversaries can guess attribute values by observing
 - High observability
 - ▶ "Age", "Sex", …
 - Low observability
 - "Birthplace", "Occupation" ...

Personalized Anonymization

- Users specify their anonymization preferences
 - Attribute disclosure level (Lower level, disclose less)
 - Identification probability threshold
- According to the preferences, anonymizer construct cloaked regions and the anonymized profiles

Nagoya University

Attribute Disclosure Level

Generalize attribute values by hierarchical taxonomy

Identification Probability Threshold

- Identification probability (Pr.)
 - The probability that the individual is identified
- Threshold (T)
 - The highest probability permitted by the user

Matching Degree

- The probability that a user can be related to an attribute value by watching
 - The probability is an empirical value
 - Describe the observability of an attribute value

Matching Degree Table

- Record all the matching degrees between users and nodes in the taxonomy tree
 - Anonymizer owns the matching degree table

Matching Degree Table								
ID	Level 1	Level 2		Level 3				
	[20-39]	[20-29]	[30-39]	[20-24]	[25-29]	[30-34]	[35-39]	
	0.88	0.88	0.00	0.54	0.34	0.00	0.00	
	1.00	0.90	0.10	0.38	0.52	0.10	0.00	
	0.79	0.79	0.00	0.56	0.23	0.00	0.00	
						•••		

Calculate Identification Probability (cont.)

 Calculate the identification probabilities by looking up the matching degree table

Anonymization Algorithm

🕢 Nagoya University

Anonymization Process

Input (sporadic user requests)

- Profile (name, age, …)
- Location (geographical coordinate)
- Anonymization preference (disclosure level, threshold)

Construct candidate group

- The identification probability (*Pr*.) of each user should be lower than the threshold (*T*) permitted by her
- The cloaked region should be smaller than the maximum size specified by the service provider

.

00

Probs. < Ts

Size < Limit

0 0

Output

Candidate group

Temporal Information of User Requests

Starting time

When the user requests the service

Duration

- How long the user is willing to wait
- Deadline
 - Starting time + Duration

Naïve Approach

- Process requests in the order of their deadlines
- When a candidate group is constructed successfully, output it immediately

Users ordered by deadlines: u_1 , u_2 , u_3 , u_4 ...

Output

Optimization Idea

- Wait for the appearance of a better candidate group until the earliest deadline came
 - Six different approaches

Optimization Approaches (2/6)

- Deadline-based (candidate first)
 - Add the new user into the existing candidate groups
 - If no candidate group can merge it, construct new groups

Lazy (non-candidate first)

Add the new user into the existing non-candidate groups to make the groups satisfying the thresholds

Optimization Approaches (4/6)

- Many-first: Output the candidate group containing the largest number of users
- Next-deadline-based: Output the candidate group containing the next-earliest deadline user
- Avg-deadline-based: Output the candidate group with the earliest average deadline
- Threshold-based: Output the candidate group containing the lowest-threshold user Next-Farlier (t+t+t+t)/4 Lowest-Threshold

Many-First Next-Deadline-Based Avg-Deadline-Based Threshold-based

Nagoya University

Experiments

7 Nagoya University

Settings

Experimental parameters	Value			
Number of users	1000			
Request frequencies	10 times/s (default)			
Expiration duration (deadline)	10s ∓10% (default)			
Used attribute	Age			
Age range	[20, 39]			
Disclosure level	1, 2, 3			
Threshold probability	0.3, 0.4, 0.5 (default)			
Cloaked area size limit	1000×1000 (default)			
Evaluation criteria	Meaning			
Throughput	The number of users			

successfully anonymized

The average disclosure level

Quality

Varying Request Frequencies

Varying Maximum Size of Cloaked Region

Varying Durations

Varying Probability Thresholds

Conclusions and Future Work

Conclusions

- Propose a new personalized anonymization method for LBSs considering not only locations but also the attribute observability
- Propose several variations of strategies to implement the new anonymization method
- Conduct experiments to evaluate the strategies

Future work

 Develop high-throughput strategies that can anonymize users with low thresholds

Thank you!

