Management of Dynamic Context Models with Data Stream Processing

2nd International Workshop on Information Management for Mobile Applications in conjunction with VLDB 2012

Department für Informatik Juniorprofessur Datenbank- und Internettechnologien Carl von Ossietzky Unversität Oldenburg

dnicklas@acm.org

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

Overview

- Introduction
 - Context and context-aware applications
 - Data stream processing
- Context Management
- Dynamic Context Management
 - two application examples:
 - Sensor fusion for autonomous vehicles
 - Safe offshore operations
- Conclusions

Available Context Information

Context is any information that can be used to characterize the situation of an entity.

An entity is a **person**, **place**, or **object** that is considered **relevant to the interaction** between a user and an application, **including the user and applications** themselves.

A system is context-aware

if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task.

A. K. Dey. Understanding and using context. Personal and Ubiquitous Computing, 5(1):4–7, 2001.

dnicklas@acm.org

dnicklas@acm.org

Static and Dynamic Data Management ...

Data Base Management Systems

- "store, then process"
- analytical queries
- one-time queries
- well-known technology
- user/application is active, data management passive

Data Stream Management Systems

- "on-the-fly" data processing
- real-time reaction on changes
- store only what needs to be kept
- register long-running queries
- user/application is passive, data management pushes data
- Complex event processing for temporal patterns

Features of Data Stream Management Systems

- Programming Abstraction
 - declarative: query
 - functional: flow graph
 - \rightarrow enables optimizations
 - \rightarrow better maintanance of systems
 - → using a DSMS on data streams is like using a DBMS instead of files
- Data flow vs. event bus (as in many CEP engines)
 - execution of data flow processes only data items that are needed by a query
- Parallel execution of operators in graph
 → no shared memory
- Data streams can be unbounded:
 - issues with sorting, joins, aggregation
 - \rightarrow approximate answers
 - \rightarrow window semantics

VON

However ...

Data Base Management Systems

- ACID properties, persistant storage
- well-established semantics (rel. algebra)
- well-established optimizers
- often deeply integrated into enterprise IT infrastructure
- can also cope with dynamic data management (triggers, repeated optimized queries, continuous queries, compiled queries)

Data Stream Management Systems

- main memory processing
- often non-deterministic results (depend on timing of streams)
- no standard query semantics (often relational algebra with extras, or many user-defined operators)
- new system in IT infrastructure
- has often to be combined with static data management

Context Management

NSASG -VON OSSIETZKY How to get the context? versität not so annoying OLDENBURG shopping guide situation user is accepting shopping recommendations opening hours near by: San Pietro, related user's Musei Vaticani, Borgo A. timetable context Angelo, shopping sites user's speed inside Piazza San Pietro afternoon context location of user current time data type WGS84 coordinates **GML** Timestamp data 9,175; 48,7826 2005-10-18T20:47:00.000 **GPS**click on system gps . . . sensors Sensor clock clock map

dnicklas@acm.org

13

Context types

- Geographic context: map data
 - Streets, buildings, land marks, points of interest, ...
 - Data source: geographic information systems (GIS)
 - Stationary objects, rarely changing
- Dynamic context: movement and change
 - People, vehicles, traffic situation, weather, ...
 - Data source: sensors
- Information context: digital world, "cyberspace"
 - web sites, documents, game objects, ...
- Technical context: infrastructure
 - access networks, topology, services, (printer, projector, ...)
- User context
 - activities, plans, preferences
 - often derived from dynamic context (e.g., camera, accelerometer)
 - highly sensitive!

Context characteristics

Context characteristics

- Context information is heterogeneous
 - discrete / continuous
 - multi-dimensional
 - multi-media
 - spatial
 - sensed / static / profiled / derived
- Context information may differ in quality; may be
 - unknown
 - ambiguous
 - imprecise
 - erroneous

- Context information differ in
 - type
 - information quality
 - temporal characteristics

- Sensed Context: Low persistence
 - may be inaccurate, unknown, or stale
 - source of errors
 - sensor failures
 - network disconnections
 - delays (in communication or processing)

Context characteristics

- Context information needs temporal meta data
 - past state (history)
 - current state
 - future state (prediction)
 - changes in state over time
- Context has various dependencies
 - physical laws
 - ownership
 - who owns devices
 - which computers have a license to run
 - particular software
 - derivation rules for derived context

Local context model or shared

- Local context model:
 - context management for just one application
 - design of components up to the software developer, but it's a good idea to seperate concerns:
 - from sensors to data
 - from data to context
 - from context to situation
- Shared context model:
 - common context management for several applications
 - design of components depends on "sharability"
 - can save tremendous amount of development time if several applications work in similar/overlapping (by space / by content) contexts

Anatomy of a context-aware application

and "sharability" of context information

Application- specific Standards for aggregation methods	Application	what the user / other systems / the world see
	Adaptation	how the application's behaviour changes
Easy to share	Situation	in what cases does adaption happen
Good for "views" Enable domain-specific standards	Context	any information that can be used to characterize the situation of an entity ["Deyfinition"]
	Data	data (e.g., from sensors, content) used by the system to determine context information

Dynamic Context Managment

• within two applications

Sensor Fusion Example (project SaLsA)

- Context-Model Generation for Safe Autonomous Transport Vehicles
 - Autonomic vehicles perform mobility operations with walking speed to ensure safety
 - Faster mobility requires specific knowledge of the environment
 - Realization via a dynamic context model based on sensor data with uncertainties
 - Using Data Stream
 System (DSMS) for
 Sensor Fusion

Sensor fusion example: Sensors

- LMS100:
 - Indoor
 - Scanning Frequency: 25Hz / 50Hz
 - Resolution (Degree) : 0.5° 0.25°
 - Operating Range: 0.5m ... 20m
 - Field of View: 270 °
- LMS151:
 - Outdoor
 - Scanning Frequency: 25Hz / 50Hz
 - Resolution (Degree) : 0.5° 0.25°
 - Operating Range: 0.5m ... 50m
 - Field of View: 270 °

www.mysick.com

Sensor fusion example: Processing

- Merge Operator:
 - Calculates the occupy probability of each cell in the occupancy grid along each laser beam using a Bayesian Updater.
 - Number of laser beams depend on application settings:
 - 540 Beams (0.5 °) / 1080 Beams (0.25°)
 - Resulting in up to 54,000 points per second per sensors
- Spread Operator:
 - Realized using a Kernel-Operation in OpenCV to summarize the probabilities of each grid cell in the log domain
- Current approach requires ~150ms for one occupancy grid using an old Intel Core 2Duo CPU.

However, each beam can be processed in parallel.

Semantically defined and deterministic processing

- System time independent
- Robust against race conditions or bursts

Data Stream Management by Odysseus

Flexibe Open Source Data Steam Management Framework

Built-in optimization techniques

Time intervals as stream model

- Reduction of system load and latencies
- Framework architecture (OSGi)
 - Extensible for new requirements, operators, scheduling strategies,
 - Adaptable even at runtime

Apache 2.0 License

ODYSSEU

dnicklas@acm.org

SOOP Overview

Real-Time Situation Analysis

dnicklas@acm.org

dnicklas@acm.org

How to set up the Situation Analysis

How do we get there ...

- Use generic system architecture from context-aware applications!
 - Data: typed data from sensors
 - Context: relevant observable parameters from the enrivonment
 - E.g.: crew.position, sea.level, crane.status, ...
 - In SOOP: defined by the context model
 - Situation: relevant combination of context parameters
 - Adaptation/Application: warn crew

In SOOP:

- Non-critical: current activity (from process model), general status of ressources
- Critical:
 - Hazards ("crew member overboard")
 - Trends towards hazards ("sea rising")

Application

Adaptation

Situation

Context

Situation models

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

- Situation definition:
 - Semi-formal description of the situation
 - Developed by domain experts
 - Uses system model (context variables)
- Situation model:
 - Executable query plan(s) based on context variables

higher level "view" on sensor data / context model

- Context definition:
 - Semi-formal description of parameters in the system model
- Context model:
 - Set of executable query plans to determine context parameters based on sensor data

Conclusion

- Dynamic context models are needed in many (mobile) applications
- 2 example applications
 - sensor fusion for autonomous vehicles
 - environmental monitoring for safe offshore operations
- Challenges:
 - management of high update rates
 - sensor data (and thus context) quality, mainly
 - inaccuracy
 - staleness
 - existential uncertainty
 - modeling and maintanance of context models and situations
 - communication to mobile applications
- Data stream management can be one tool to work on these challenges

http://nexus.informatik.uni-stuttgart.de/COMOREA

CoMoRea 2013: 10th IEEE Workshop on Context Modeling and Reasoning San Diego, California, March 18-22, 2013 http://www.journals.elsevier.com/pervasive-and-mobile-computing

Special Issue on Information Management in Mobile Applications

Submission deadline: November 30th, 2012 Expected Publication of Special Issue: 2013

The **Pervasive and Mobile Computing Journal (PMC)** is a professional, peer-reviewed journal that publishes high-quality scientific articles (both theory and practice) covering all aspects of pervasive computing and communications. Topics include, but not limited to:

... (a selection) ...

- Mobile computing systems and services
- Mobile grid and peer-to-peer computing
- Context-aware computing and location-based services and applications
- Service creation, discovery, management, and delivery mechanisms
- Middleware and agent technologies

Thank's for the fish!

... also to Christian Kuka (OFFIS), Marco Grawunder (Uni Oldenburg), Jadwiga Indulska (University of Queensland) and Nils Koppaetzky (Uni Oldenburg)

dnicklas@acm.org