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e Challenges of evaluating integration systems

— Diversity of tasks
 Various types of metadata used by integration tasks

— Quality 1s as important as performance
» Often requires “gold standard” solution

e Goal: make empirical evaluations ...
* ... more robust, repeatable, shareable, and broad

* ... less painful and time-consuming

 This talk:

— iBench — a flexible metadata generator
— BART - generating data quality errors




OVCI’VIGW ILLINOIS INSTITUTE
OF TECHNOLOGY

e Challenges of evaluating integration systems

— Diversity of tasks
 Various types of metadata used by integration tasks

Patterson [CACM 2012]
“When a field has good benchmarks, we settle debates
and the field makes rapid progress.”

— iBench — a flexible metadata generator
— BART - generating data quality errors
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Many integration tasks work with metadata:

 Data Exchange
— Input: Schemas, Constraints, (Source Instance), Mappings
— Qutput: Executable Transformations, (Target Instance)
* Schema Mapping Generation
— Input: Schemas, Constraints, Instance Data, Correspondences
—  Qutput: Mappings, Transformations
* Schema Matching
— Input: Schemas, (Instance Data), (Constraints)
— Qutput:. Correspondences
* Constraint-based Data Cleaning
— Input: Instance Data, Constraints
— Qutput: Instance Data
e Constraint Discovery
— Input:. Schemas, Instance Data
— Qutput. Constraints
* Virtual Data Integration
— Input: Schemas, Instance Data, Mappings, Queries
—  QOutput: Rewritten Queries, Certain Query Results

* ... and many others (e.g., Mapping Operators, Schema Evolution, ...)

Ei.::'
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 Data Exchange
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— Qutput: Executable Transformations, (Target Instance)
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— Input: Schemas, Constraints, Instance Data, Correspondences
—  Qutput: Mappings, Transformations

=+ Schema Matchino

Inputs/Outputs
Metadata: Schemas, Constraints, Correspondences, Mappings

Data: Source Instance, Target Instance
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 How are integration systems typically evaluated?

* Small real-world integration scenarios
— Advantages:
* Realistic ;-)
— Disadvantages:
* Not possible to scale (schema-size, data-size, ...)
* Not possible to vary parameters (e.g., mapping complexity)

* Ad-hoc synthetic scenarios

— Advantages:

* Can influence scale and characteristics
— Disadvantages:

* Often not very realistic metadata

* Diversity requires huge effort

EQ::'
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 We need tools to generate inputs/outputs
— Scalability

* Generate large integration scenarios efficiently
» Requires low user effort
— Control over metadata and data characteristics
* Size
* Structure

— Generate inputs as well as gold standard outputs
— Promote reproducibility

» Enable other researchers to regenerate metadata to repeat an experiment
» Support researchers in understanding the generated metadata/data

* Enable researchers to reuse generated integration scenarios

v
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« STBenchmark [Alexe et al. PVLDB ‘08]

— Pioneered the primitive approach:
» Generate metadata by combining typical micro scenarios

* Data generators
— PDGF, Myriad
— Data generators are not enough
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* iBench is a metadata and data generator

* Generates synthetic integration scenarios
— Metadata

e Schemas

« Constraints

* Mappings

» Correspondences

— Data
o “Realistic” metadata




Integration Scenarios
OF TECHNOLOGY

* Integration Scenario
-M=(S,T, X, X1, L, L, J, [A)

10



Integration Scenarios
OF TECHNOLOGY

* Integration Scenario
—M= (SaTa Zsa ZTa 29 19 Ja @E)

— Source schema S with instance I

— Target schema T with instance J
— Source constraints 2 and target constraints X
o Instance I fulfills 2 and instance J fulfills 2,

— Schema mapping X~
e Instances (I,J) fulfill X

— Transformations (4] []
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* Inputs - Configuration
— Scenario parameters Il (min/max constraints)
« Number of source relations
* Number of attributes of target relations
— Primitive parameters
* Template micro-scenarios that are instantiated to create part of
the output
* Output
— A imtegration scenario M that fulfills the constraints of
specified in the configuration
XML file with metadata

o CSV files for data

11
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* Input
arameter (4 B ource arget
P AR S T:
Number Relations 2-4 1-3
Number Attributes 2-10 2-10
Number of Join Attr 1-2 1-2
Number of Existentials 0-3

* Example solution (mappings)

- S1(A,B,(),S2(C,D,E) —> T(A,E)

+ S3(A,B,C,D),S4CE,A,B) —> 3X,Y,Z T1(A,X,X),
T2(A,Y,C),T3(C,B,Y,2)

:ii-:: ':
\_/
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Example o MD TaSk ILLINOIS INSTITUTE

OF TECHNOLOGY

* Input
Parameter Source  Target
Number Relations 2-4 1-3
Number Attributes 2-10 2-10
Number of Join Attr 1-2 1-2
Number of Existentials 0-3

* Example solution (mappings)

- S1(A,B,0),S2(C,D,E) — T(A,E)

- S3(A,B,C,D),S4(E,A,B) —> aX,Y,Z T1(A,X,X),
T2(A,Y,C),T3(C,B,Y,7)

* Limited usefulness in practice

— Can we generate “realistic” scenarios?

12 82
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 Mapping Primitives
— Template micro-scenarios that encode a typical schema
mapping/evolution operations
* Vertical partitioning a source relation
— Used as building blocks for generating scenarios

* Comprehensive Set of Primitives
— Schema Evolution Primitives
* Mapping Adaptation [ Yu, Popa VLDBOS5]
* Mapping Composition [Bernstein et al. VLDBIO0E]
— Schema Mapping Primitives
e STBenchmark | Alexe, Tan, Velegrakis PVLDBOS]

— First to propose parameterized primitives

I

\——/
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Example Mapping Primitives

Vertical Partition Horizontal Partition
Works Emp Dept1
empld oo » empld Dept _.~dname
ename e » ename dname . fi..-~addr
manager . é..___Dept2
... Dept .. *dname
A dept s addr
“amanager f1/£2 predicates on addr
WID «—
Surrogate Key Invention

» Parameterize primitives

City ’Cl:]yam e - Number of relations for partitioning
name T - Number of attributes for invention
.................. » mayor
mayor |D - LR J

29
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Integration Scenario Genera
OF TECHNOLOGY

Source Target
° Approach ...................................... >

— Start with empty
integration Scenario ................................. »

. Repeatedly add ........................... »
lnstances Of pI‘lmltheS ...................................... >
according to specs

— Ifnecessary add | | e
additional random vappng | .
mappings and schema Random

.......... apping
elements e >

1s 82




Primitive Generation
OF TECHNOLOGY

* Example Configuration

— I want 1 copy and 1 vertical partitioning

I
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* Example Configuration

— I want 1 copy and 1 vertical partitioning

Source Target
Cust Customer
Name > Name
Addr > éddr_

I
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Primitive Generation LLINGIS INSTITUTE
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* Example Configuration
— I want 1 copy and 1 vertical partitioning

Source Target
Cust Customer
Name > Name
Addr > Addr
Emp Loyalty
Name Person
CompaN Id Grovnney
Name
WorksAt :
EmpRec
Firm
Id .........

E_Q:.
\——/
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Sharing Schema Elements
OF TECHNOLOGY

* Sharing across primitives

— Primitives cover many patterns that occur in the real
world

— however 1n the real world these primitives do not
occur in 1solation

* Enable primitives to share parts of the schema

— Scenario parameters: source reuse, target reuse

— Probabilistically determine whether to reuse
previously generated relations

\—/
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Sharing Schema Elements
OF TECHNOLOGY

* Example
Source Target
Cust Customer
Name > Name
Addr > Addr
Emp Loyalty
Name Person
Company Id
Executive Name
Name WorksAt
Position EmpRec
Firm :
T ceeeeeeee —
18 S




User-deftined Primitives
OF TECHNOLOGY

* Large number of integration scenarios have

been shared by the community
— Amalgam Test Suite (Bibliographic Schemas)
* Four schemas - 12 possible mapping scenarios

— B10 schemas originally used in Clio
e Genomics Unified Schema GUS and BioSQL

— Many others (see Bogdan Alexe’s archive)

» User defined primitive (UDP)

— User encodes scenario as iBench XML file
— Such scenarios can then be declared as UDPs

» Can be instantiated just like any build-in primitive

v
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* Evaluating constraint-based data cleaning
algorithms

— Need dirty data (and gold standard)
— Algorithms are sensitive to type of errors

e Need a tool that

— Gi1ven a clean DB and set of constraints

— Introduces errors that are detectable by the
constraints

— Provides control over how hard the errors are to
repair (repairability)

v
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* Benchmarking Algorithms for data Repairing and
Translation

22
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* Input: a clean database wrt
a set of data-quality rules
and a set of configuration
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* Benchmarking Algorithms for data Repairing and
Translation

— open-source error-generation system with an high level of
control over the errors

* Input: a clean database wrt
a set of data-quality rules
and a set of configuration
parameters

* QOutput: a dirty database
(using a set of )
and an estimate of how hard 1t will
be to restore the original values

22
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* Benchmarking Algorithms for data Repairing and
Translation

— open-source error-generation system with an high level of
control over the errors

* Input: a clean database wrt
) BART ("BART GUI )( Command Line ) d Error
a set of data-quality rules S A Generation

( Error-generation Engine ) Task

and a set of configuration 4

—

parameters I W :
Di lean
* QOutput: a dirty database mvﬂsﬁn DB I

(USIIlg d Set Of ) gle?nina _’ﬁb’ Precision o
. . . stem DB Recall J
and an estimate of how hard it will @ <:| = _ ®
. . off Vo Repaired |, [ Precision | |
be to restore the original values System 2 j _Becall |
.| Cleaning .m‘
2) S |_SYtom 3 Becall
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 Constraint language:
denial constraints

Name Season Team Stadium Goals
— Subsumes FDs, CFDs,
editing rules, ...

t1 Giovinco  2013-14 Juventus Juventus Stadium 3

t2 Giovinco  2014-15 | Toronto BMO Field 23

o Update Values Of a Cell t() 3 Pirlo 2014-15 Juventus Juventus Stadium 5

Create a ViOlation Of a t4 Pirlo 2015-16  N.. City Yankee St. 0
. t5 Vidal 2014-15 Juventus Juventus Stadium 5

constraint | |
t6 Vidal 2015-16  Bayern Allianz Arena 3

—t2.Team =
‘ Juventus’

dc: -( Player(n, s, t, st, g), Player(n’, s/, t’, st’, g’), t=t’, st # st”) <L
23 V
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* Error generation 1s an NP-complete problem
— 1n the size of the DB

* How to 1dentify cells to change efficiently?

* How to avoid interactions among introduced
constraint violations?

v

24




Error Generation ILLINOIS INSTITUTE
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* Our approach

— Sound, but not complete

— Avoid interactions among cell changes

* Once we decide on a cell change to introduce a violation
we exclude other cells involved in the violation from
future changes

— Vio-Gen queries
* Derived from detection queries for denial constraints

 Find cell to update such that the update 1s guaranteed to
introduce a violation

» Tuples that are almost in violation

dq: Player(n, s, t, st, g), Player(n’, §’, t’, st’, g’), t=t’, st # st’ o
vg: Player(n, s, t, st, g), Player(n’, s’, t’, st’, g’), t=t’, st = st’ i"y/:
S S S
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* 1Bench has already been applied successfully
by several diverse integration projects

e We have used iBench numerous times for our
own evaluations

— Our 1nitial motivation for building iBench stemmed
from our own evaluation needs

\—/
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* Translate mappings
— from expressive, less well-behaved language (SO tgds)
— 1nto less expressive, more well-behaved language (st-tgds)

« Input: schemas, integrity constraints, mappings
* QOutput: translated mappings (if possible)
* Evaluation Goal: how often do we succeed

* Why iBench: need a large number of diverse mappings
to get meaningful results

« Evaluation Approach: generated 12.5 million
integration scenarios based on randomly generated
configuration file

28
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Vagabond

— Finding explanations for data exchange errors
» User marks attribute values in generated data as incorrect
* System enumerates and ranks potential causes

« Input: schemas, integrity constraints, mappings, schema
matches, data, errors

* Qutput: enumeration of causes or incremental ranking
« Evaluation Goal: evaluate scalability, quality
* Why iBench:

» Control characteristics for scalability evaluation

 Scale real-world examples

29
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* Learning mappings between schemas using
statistical techniques

* Input: schemas, data, constraints
* Output: mappings

— University of California, Santa-Cruz

* Lise Getoor, Alex Memory
e Rene¢ Miller
* https://lings.soe.ucsc.edu/people

v
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And morce ... ILLINOIS INSTITUTE

OF TECHNOLOGY

* Functional Dependencies Unleashed for Scalable Data Exchange
— [Bonifati, Ileana, Linardi - arXiv preprint arXiv:1602.00563, 2016]

— Used 1Bench to compare a new chase-based data exchange algorithm to
SQL-based exchange algorithm of ++Spicy

* Approximation Algorithms for Schema-Mapping Discovery from
Data
— [ten Cate, Kolaitis, Qian, Tan AMW 2015]
— Approximate the Gottlob-Senellart notion
— Kun Qian currently using iBench to evaluate effectiveness of approximation

 Comparative Evaluation of Chase engines
— [Universita della Basilicata, University of Oxford]
— Using 1Bench to generate schemas, constraints

E§::'
v
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 Empirical Evaluations of Integration Systems

— Need automated tools for robust, scalable, broad,
repeatable evaluations

* BART

— Controlled error generation

— Detectable errors, measure repairability

* iBench
— Comprehensive metadata generator

— Produces mputs and outputs (gold standards) for a variety
of integration tasks

\—/
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* Data quality measures
— Implement complex quality measures

* iBench
— More control over data generation

— Orchestrating multiple mappings
* Sequential: e.g., schema evolution
 Parallel: e.g., virtual integration

* BART

— Support combined mapping/cleaning scenarios

— How to efficiently generate clean data (without having to
run full cleaning algorithm)

— Similarity measure for instances with labelled nulls/
variables

\—/
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* iBench
Webpage: http://dblab.cs.toronto.edu/project/iBench/
Code: https://bitbucket.org/ibencher/ibench/

Public Scenario Repo: https://bitbucket.org/ibencher/
ibenchconfigurationsandscenarios

* BART

Webpage: http://www.db.unibas.it/projects/bart/
Code: https://github.com/dbunibas/BART

Example Datasets: http://www.db.unibas.it/projects/bart/files/
BART-Datasets.zip

I
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FOR A FAIR SELECTION
EVERYBODY HAS TO TAKE
THE SAME EXAM: PLEASE

CLIMB THAT TREE
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