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Abstract— The emergence of intelligent transportation sys-
tems and the availability of detailed past trips and real-time
data enabled more accurate travel time prediction algorithms.
Passengers of public transportation highly value reliable service
and accurate travel information. Unexpected delays while
traveling impact traveler satisfaction enormously. We present
a novel approach for a travel time prediction model for public
transit in an urban setting. For this, we extended the existing
profile similarity model based on k-medoids clustering and
augmented it for an urban regions. The algorithm integrates
real-time data from preceding vehicles traveling on the same
links with a Kalman filter. Hence, the developed model uses
the information available in modern ITS by combining historic
travel time profiles with real-time data. While the algorithm
focuses on short-term predictions, we have also evaluated it for
long-term forecasts. Our results show that the proposed model
outperforms benchmark models regarding certain criteria and
can provide accurate travel times with comparably low-volume
data input. Furthermore, the results indicate that the combi-
nation of a Kalman filter with a k-medoids approach improves
the quality of the predictions.

Index Terms— Bus Travel Time Prediction, Intelligent Trans-
portation Systems, Public Transit, Data Science.

I. INTRODUCTION

OVER the last decades, intelligent transportation sys-
tems (ITS) for public transport have evolved into

distributed, highly complex, and versatile systems. For pas-
sengers, the predominant task of an ITS is providing accurate
information on public transportation to public displays or
personal smartphones in real-time. Today, this information
includes the planned arrival times as well as the predicted
arrival times of vehicles. An ITS also assists public transit
operators by permanently monitoring the fleet, allows for
control of the fleet, and stores all operational information
for later use. Therefore, with increasing ITS availability,
operational data’s overall availability, including past trips of
vehicles, also rises. This increase of available data enables
more sophisticated travel time prediction algorithms.

The need for more accurate travel time prediction grows as
mobility becomes increasingly interconnected in intermodal
journeys. Intermodal journeys aim to combine the flexibility
and low travel time of personal transportation with the
sustainability and throughput of public transit by interlinking

Felix Schwinger and Matthias Jarke are additionally affiliated to Fraun-
hofer FIT, Germany.

several mobility modes in one trip. For seamless intermodal
journeys, an accurate prediction of travel time for public
transit becomes increasingly essential; even a tiny deviation
may lead to long waits when a critical transfer is missed.

There is a growing need for more environmentally sus-
tainable transportation, with public transportation as its back-
bone. The transport sector’s influence on climate change is
vast. It is the single largest contributing sector of greenhouse
gases and the only sector in which the greenhouse gas
emissions have not reduced in the European Union since
1990 [1]. A considerable amount of greenhouse gases di-
rectly relate to personal transportation. Enabling people to
switch from private to public transportation or intermodal
journeys with large sections based on public transportation
may help the sector become more eco-friendly. Reliability of
the transportation strongly influences customers’ satisfaction
and loyalty in their chosen transportation mode [2]. A
reliable transport service consistently operates as planned.
Accurate real-time travel information increases the perceived
reliability, even when delays occur [3]. Unexpected delays
harm customer satisfaction, whereas early communicated
delays increase reliability. Customers with access to accurate
real-time information feel more in control of their trip and
can better plan their waiting time and possible transfers to
other transportation modes [4]. Indeed, reliability influences
travel mode choice and may help travelers switch to more
ecological sustainable transportation modes.

Travel time prediction algorithms for public transportation
have been thoroughly researched, and various solutions have
been proposed [5]. Past research has rarely focused on short-
term travel time prediction (i. e., predictions for events less
than 10 minutes in the future) but highlighted long-term
travel prediction. Short-term travel prediction is crucial as
passengers time their arrival at their origin station based on
the available real-time information [4]. To date, proposed
prediction algorithms are either efficient or accurate but
seldom both, limiting their practical large-scale applicability
in ITS. Most of the previous approaches evaluate prediction
algorithms only on a single line of a public transportation
network; hence, scalability improvements toward multi-line
predictions are necessary. Therefore, we aim to introduce
an accurate short-term travel time prediction algorithm for
public transportation with practical applicability in ITS.



Our proposed hybrid algorithm is based on the profile
similarity model (PSM) [6] and a Kalman Filter (KF) [7].
As the PSM is initially developed for long-distance, intercity
bus travel, we adapted the algorithm for short-distance, intra-
city bus travel. The PSM incorporates past trip data into the
prediction, whereas the KF incorporates recent trip infor-
mation from other vehicles. To check whether the proposed
hybrid algorithm is both scalable and accurate on short-term
travel time predictions in an urban context, we performed
a simulation as a case study with data from the city of
Aachen. Furthermore, the proposed hybrid algorithm will be
compared with other travel time prediction approaches such
as neural networks.

The remainder of this paper is structured as follows.
Firstly, Section II introduces the scenario for short-term
travel prediction algorithms and highlights their relevant
qualities. Secondly, Section III discusses relevant related
work. Section IV introduces our proposed solution in detail.
In Section V, we present the algorithm’s evaluation. Finally,
Section VI concludes the paper and provides an overview of
further research challenges.

II. SCENARIO

Public transportation passengers are often not interested in
the travel time but the arrival or departure time of vehicles
at particular stop points. However, the problem of arrival
or departure time prediction can be reduced to the travel
time prediction of vehicles [8]. We define bus travel time
prediction as short-term if the bus’s planned arrival time
is less than 10 minutes in the future from a travel time
request. Such a time horizon is especially interesting for
urban scenarios. On the one hand, people usually estimate
the time needed to reach their departure station and look
at real-time information just in time before departing [4].
On the other hand, the passenger’s trips in urban settings are
relatively short [9]. Hence, we focus on short-term bus travel
time prediction instead of long-term prediction, typically
used for intercity travel with longer distinct journeys.

Predictors of any kind face multiple challenges. In general,
there is often a trade-off between accuracy and complexity.
The definition of the following six quality criteria regard-
ing the practical application in ITS was inspired by the
comparison of Cristóbal et al. [6]: Q1: Accuracy. For a
prediction model, accuracy is arguably the most crucial
property. It measures how large the deviation between a
predicted travel time and the measured travel time is. Q2:
Data Demand. The amount of required training data con-
sisting of past trips is essential, as these need to be gathered
before the algorithm can predict travel times. Q3: Time
Demand. The duration of the training phase for the predictor
is also crucial. If a model is not scalable, time demand
is critical. However, most often, the data demand is more
important than the time demand, as the time demand can
be reduced by increasing the system’s computation power.
In contrast, operators cannot compensate for a large data
demand as easily. Q4: Scalability. As public transit operators
operate multiple lines, an algorithm not only needs to predict

travel times for a single line but the whole transportation
network. Scalability describes a predictor’s ability to be used
on a complete transportation network. Q5: Flexibility. Public
transit operators regularly update their transportation network
or adapt their timetables. Flexibility describes a predictor’s
ability to react to timetable changes without extensive re-
training. For the practical applicability of a model in ITS,
flexibility is an important property. Q6: Interpretability. For
most predictors, the interpretability of the results is a desired
property. Interpretability describes how well experts can
comprehend the internal prediction process. As the travel
time prediction is used to inform the passengers of expected
delays and used for the bus dispatcher to react to events
appropriately, the dispatcher must understand why certain
travel time predictions occur.

When balancing accuracy and complexity, ITS users
should prefer a low data demand (Q2) over a low computa-
tional demand (Q3). Even in urban scenarios with frequent
trips, data collection takes a long time. This observation
holds especially for models that are not scalable (Q4) and
not flexible (Q5), i. e., require retraining once the network is
slightly adapted.

III. LITERATURE REVIEW

In this section, we present an overview of current advances
toward accurate and fast travel time prediction. We will
introduce prediction models grouped by their different foun-
dations into five distinct groups. Afterward, we will discuss
each prediction model.

A. Simple Models

Simple models do not require much data and are less
complicated than other algorithms. Typically, this simplicity
results in poor accuracy. Delay-based models (Delay) offset
the current delay or earliness to the scheduled arrival times
while incorporating the buses’ dwell time [10].

B. Machine Learning Regression Models

Machine learning regression (MLR) models learn param-
eters of mathematical functions to predict a value based on
a set of feature variables. Linear regression (LR) models
assume a linear relationship between the target variable and
independent features [11, 12]. In contrast, kernel regression
(KR) allows for a non-linear relationship between the target
variable and the feature set. Both LR and KR reveal im-
portant factors that influence travel times [13, 14]. Support
vector machines (SVM) classify data by separating the clus-
ters with the broadest hyperplane possible. SVMs can also
learn non-linear relationships using the kernel trick [15, 16].
Models based on SVM deliver good results. However, SVMs
do not scale to larger problems [17], making a single SVM
for a complete transportation network infeasible. In the
domain of travel time prediction, artificial neural networks
(ANN) are also widely used. The accuracy of these models
is high; however, all regarded publications only evaluate one
bus line [14, 18–21]. For travel time prediction, a particular
variant of recurrent neural networks, long short-term memory



networks (LSTM) [8, 17], have proven to be promising.
These networks are suited for identifying long-term patterns
while also incorporating more dynamic short-term influences.
Furthermore, they are well-suited for modeling time series
data. Neural networks have a very high predictive power, but
they need a lot of training data and training time [14]. Finally,
models based on the k-nearest-neighbor (k-NN) regression
algorithm deduce the value of the target variable based on
the similarity to the nearest neighbor [22, 23].

C. State-Based Time Series Models

State-based time series (SBTS) models assume that the
target variable’s value is dependent on a state variables’ past
values. The Kalman Filter (KF) uses a two-step iterative
procedure to estimate the value of state variables by including
new measurements. In the first step, the state variables are
estimated based on a mathematical model. In the second step,
these estimations are updated with recent measurements,
allowing KF models to handle inaccuracies in the data
well [7, 24]. While smoothing functions (Smoothing) are less
common in the literature than other approaches, some have
been proposed and evaluated [25]. ARIMA models have
also been proposed but are slightly less accurate than other
regression or state-based approaches [26]. Both ARIMA and
smoothing models need to be more thoroughly investigated
for this problem area.

D. Clustering

One prediction model called profile similarity model
(PSM) extracts historic travel profiles from clusters of past
trips [6]. The model uses k-medoids clustering with the
Manhattan distance. Each historic travel profile represents the
prominent travel behavior of one cluster. During prediction,
the model determines the historic travel profile most similar
to the current driving behavior. The model then derives the
travel times from this historic travel profile as predictions.
The PSM was initially developed for intra-city travel time
predictions. Hence, the model directly operates on a vehicle’s
on-board computer independent of outside information.

E. Hybrid Models

Hybrid models combine multiple prediction algorithms
into a single model. Most commonly, machine learning
regression algorithms are combined with a Kalman filter,
e. g., SVMs have been combined multiple times with Kalman
filters [27–29]. Similar approaches have also been conducted
with ANNs [30, 31]. However, all considered hybrid models
have only been used on a single bus line, most likely because
of the significant data demand for multiple lines of SVM-
based and ANN-based models. The authors conclude that,
both for SVM and ANN-based models, the combined models
outperform single-predictor models in terms of accuracy.

F. Discussion

In this discussion, we compare the introduced approaches
using the proposed quality criteria on a coarse-grained level.
For this, we describe each predictor’s qualities, elucidate our

TABLE I: Comparison of travel time prediction models.
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proposed prediction algorithm as a hybrid model combining
an adapted PSM [6] with a KF model [7] and finally motivate
our decision. Table I qualitatively summarizes the results: the
more filled the circle, the better a model performed according
to this criteria. Unfortunately, quantitatively comparing all
predictors is not possible, as often neither the algorithm’s
code nor the required data is publicly available.

Q1: Accuracy. In terms of prediction accuracy, complex
models generally outperform simpler ones: In particular,
SVMs, ANNs, or LSTMs outperform the state-based mod-
els [8, 27, 32]. For k-NN models, long-term predictions are
problematic [22]. The more data and computational resources
a model requires, the better generally the accuracy of the
model. Regarding the hybrid models, all models perform
better when combined with a Kalman filter as recent traffic
patterns are incorporated into the forecast [27, 29].

Q2 and Q3: Complexity. Regarding the complexity, we
differentiate between data demand (Q2) and time demand
(Q3). The comparison shows that the more accurate models
also have a longer runtime and require larger datasets for
their prediction. Longer runtime can be compensated with
more considerable computational power; for instance, Pe-
tersen et al. [8] show that their powerful ConvLSTM model
can be trained in a short amount of time on commodity
hardware utilizing GPUs. A more considerable data demand,
however, remains more critical.

Q4: Scalability. Regarding scalability, there are two ways
to scale up models to a transport network. The first approach
creates a model for each line. This scaling method is suitable
when models have low complexity (Q2 & Q3) or are very
flexible (Q5). SVMs, PSM and, K-NNs are typically scaled
this way. The second approach uses a single model to predict
the travel times for an entire network. Neural networks
are generally suitable for such a task. Nevertheless, to our
knowledge, no neural network has demonstrated such an
ability in a larger practical setting for travel time prediction.



Q5: Flexibility. Models that do not require prior training
are entirely flexible, such as the Delay-based and KF model.
They can generate predictions for different transportation
networks without much adaptation. Models that require prior
training and build an internal model, such as ANNs, LSTMs,
SVMs, or the PSM, are not as flexible as changes in the
network often necessitate retraining.

Q6: Interpretability. For prediction algorithms that build
an internal model such as SVM or ANN, it is hard to deduce
why the model comes to specific predictions, resulting in low
interpretability (Q4). Models such as the Delay-based model,
the KF, or even the PSM are usually highly interpretable. The
KF adjustments are easy to follow, whereas the number of
PSM clusters is low (typically lower than 6) and corresponds
to typical observable states, such as rush hour traffic.

If we define a model’s efficiency as a combination of
Q2 to Q6, it becomes evident that most current models
trade accuracy against efficiency As seen in Table I, most
accurate models are not efficient, while most efficient models
are not accurate. On one side is the delay-based model,
which is quite efficient, while the ConvLSTM model by
Petersen et al. [8], which is the most accurate model to date,
is on the other side. The ConvLSTM model’s accuracy is
achieved by training on a large dataset and only regarding
a single line with a limited number of stop points that do
not diverge, hinting at limited scalability and flexibility. The
ConvLSTM’s ability to provide high-quality predictions only
based on trip recordings is exceptional. However, as we set
out to create a prediction algorithm that performs well in
practice, we want to create a model that better balances
accuracy and efficiency.

When looking at models with average efficiency, only
models with average accuracy are left, such as PSM, KF, or
KR. The PSM’s strength is the clear separation of data, the
efficient reduction of data, the excellent prediction quality,
and its interpretability. The model itself only uses a few
historic travel profiles that are computed in a previous
clustering step. Compared to ANNs, the PSM requires a
far smaller dataset during training. Hence, the PSM is a
promising approach for travel time prediction for inter-city
transportation in practice.

Like existing hybrid models, we hypothesize that the
PSM’s accuracy could be increased by integrating a KF. The
KF requires no training, and the additional needed real-time
information is already present in most ITS systems. In other
words, combining average models such as PSM and KF into
a hybrid model might result in an applicable model with
reasonable accuracy and maintainable complexity.

IV. PROFILE SIMILARITY AND KALMAN FILTER MODEL

Our proposed model PSM+KF combines the profile sim-
ilarity model (PSM) [6] with a Kalman Filter (KF) [7].
The PSM was developed with intra-city bus travel in mind.
Therefore, the model is independent of a connection to an
ITS. In urban areas, vehicles usually transmit information
constantly to an ITS, allowing the PSM+KF to use more
information. The original PSM predicts travel times based

only on a small subset of a route’s stop points. This approach
has proven to work well in inter-city travel time prediction
[6]. However, as urban traffic fluctuates more and is more
prone to sudden unexpected events, the algorithm must con-
sider all stop points. The inclusion of a Kalman Filter in the
PSM+KF model allows the use of all available information of
preceding vehicles and allows to react to sudden urban traffic
events. This inclusion, however, also assumes a constant
data connection between vehicles and the ITS; without this
connection, the predictor can not compute any forecasts.

Timetables
Trip

recordings

Observed
travel time

Preprocessing

Characteristic
travel profiles

K-medoids
Clustering

Profile
Similarity

Kalman
Filter

Predicted
travel time

Latest
travel times

on route
segments

Current
travel time

Preparation

Reduction

Prediction

Fig. 1: Overview of the model’s workflow: Dashed round
boxed represent input, solid round boxes represent processed
output and squared boxes represent a data processing step.

The PSM+KF’s workflow consists of three distinct steps
(Fig. 1): Preparation, Reduction, and Prediction. The prepa-
ration step is for preprocessing the data. It consists of
computing observed travel times from past trips based on
the respective timetables and measured travel times from the
buses’ on-board computers. The Reduction, which incorpo-
rates the training phase, applies the adapted PSM clustering
and computes the characteristic travel profiles based on
past observed travel times. As the final step, the algorithm
then predicts the total travel times in two stages. First,
the algorithm predicts a travel time with the most similar
characteristic travel time profile based on the current travel
time. The KF then finalizes this forecasted travel time by
incorporating the travel times of preceding vehicles into the
prediction. As modern ITS usually perform the preparation
step, we are going to focus the discussion on the Reduction
and Prediction steps:

A. Reduction

The reduction step’s main idea is to compute k char-
acteristic travel profiles (CTPs) from past observed travel
times obtained in the Preparation step. Each CTP highlights
prominent travel behaviors, i. e., reducing the amount of
data required for each prediction while not losing important
information. The CTPs are extracted with the k-medoids
clustering approach similar to the original PSM model [6].



We adapted the algorithm of Cristóbal et al. [6] in two
ways: We regard all stop points of a line when applying
the k-medoids algorithm, and we switched the Manhattan
to a fractional distance metric. Considering all stop points
of a line is feasible as the prediction is performed in a
central ITS in our urban scenario. We assume that a much-
reduced bus stop set, i. e. regarding fewer stops, cannot
accurately represent highly fluctuating traffic patterns. There
is a slight difference in accuracy when comparing distance-
based and stop-based data sets [32]. Therefore, we expect
higher accuracy when the k-medoids clustering step regards
all stop points of a line. Regarding the switch of the dis-
tance metric to a fractional metric: Commonly used distance
metrics, such as the Manhattan or Euclidean distance, lose
their meaningfulness in high dimensional spaces and thus are
not suitable for clustering [33]. As the reduction step does
not reduce the number of stop points of a line, the number
of dimensions grows with more stop points. Therefore,
we employed the fractional distance metric (1), which is
proven to work well with high-dimensional data [33]. The
metric defines the distance between two points x and y in
a d-dimensional space with the fractional distance norm
parameter f , where f ∈ (0,1).

distdf (x,y) =
d

∑
i=1

[(xi− yi) f ]1/ f (1)

We run the k-medoids algorithm n− 1 times from 2 to
a defined upper limit n with a different value of k clusters
each time to evaluate the best number k for each dataset.
Afterward, we select the cluster with the highest Silhouette
score. The Silhouette score measures the consistency of a
cluster [6, 34]: It represents how well a data point fits into
a given cluster. The mean Silhouette score of all clusters
provides a reasonable estimation of the overall quality of
the clustering. We, therefore, select the cluster with k CTPs
that had the highest Silhouette score for the Prediction step.
Our simulation has shown that an upper limit n of 10 is
sufficient for most lines, as the Silhouette score does not
increase anymore. The CTPs are then computed and stored
for each line.

During the implementation, the k-medoids clustering ap-
proach was prone to overfitting. This overfitting sometimes
resulted in one cluster containing a handful of trips, whereas
another cluster contained all remaining trips. When the small
cluster adjusts to a group of outliers, often representing
sporadic, extreme behavior or errors, the Silhouette score
indicates a perfect fit to the data. Returning these clusters
as CTPs will likely degrade the accuracy of the predictions.
Therefore, we have introduced a balancing factor defined as
the ratio between the number of trips in the largest and small-
est cluster. The algorithm can then dismiss clustering results
not complying with a given balancing factor, improving the
predictions’ quality.

B. Prediction
The prediction is a two-step process (Fig 1): First, the

PSM gives us a prediction, and secondly, a Kalman Filter

augments this prediction. The algorithm divides a bus line
into segments that each lie between two stop points. Assume
a bus has arrived at a stop s1 and that a passenger requests
a prediction for stop s2 further down this bus’s line. Then,
the travel time to stop s2 from the start of the trip consists
of two components: The sum of observed travel times on all
segments until stop s1 and the sum of predicted travel times
on all segments between stop s1 and s2. Each segment’s travel
time is split into a dwell time at the stop and a running time.
Depending on whether the bus is currently at the stop, the
dwell time at stop s1 is observed or predicted. The running
time of all segments after s1 are predicted travel times, even
if the bus is on the segment directly after stop s1.

The predicted dwell and running time are derived from the
most representative CTP. The decision criterion for selecting
the most representative CTP is the travel time difference until
the last visited stop between the CTP and the running trip.
After choosing the CTP, the algorithm derives the dwell time
from the CTP. The predicted dwell time at stop si is equal
to the difference between the departure and arrival time at
stop si from the CTP. Similarly, the predicted running time
from stop si to si+1 is computed.

The Kalman filter then updates the predicted running
time by incorporating a set of observed running times from
other vehicles that recently traveled on the preceding route
segment. We decided not to integrate previous vehicles’
dwell time in the prediction update as it is unclear how the
dwell time of preceding vehicles influence the dwell times
of subsequent vehicles. The algorithm performs an iteration
for each element in the set of observed running times. The
integration of the Kalman Filter is similar to other hybrid
prediction algorithms [24]; therefore we only highlight the
model’s changes.

xt = Fxt−1 +But−1 +wt−1⇒ xt = xt−1 +wt−1 (2)

In (2), the Kalman Filter’s process model, which defines the
state’s progression from iteration t − 1 to t, is given. The
state vector x consists of only the predicted running time.
Therefore, the state transition matrix F reduces to a scalar
value. As there is no relationship between the predicted
running time between iteration t and t − 1, F is set to 1.
Furthermore, no external influences are modeled; hence the
term But−1 that models external influences is omitted. To still
have the process noise covariance as a tuning parameter, the
model still contains the process noise vector w.

zt = Hxt + vt ⇒ zt = xt + vt (3)

In (3), the Kalman Filter’s observation model is given. The
model defines the relation between the observation z and
the state x. The observation vector z contains one observed
running time from the set of observed running times during
each iteration step. The observation matrix H reduces to a
scalar value and is set to 1 because both the observation
and state models simulate the running time on the same
segment. The term vt defines the observation noise and is
kept as a tuning parameter. The defined Kalman filter then



computes the travel time until stop point s1 + 1 is reached.
As long as the stop s1 + 1 is not equal to stop s2, the
algorithm continues to predict dwell and running times. Once
the algorithm computes the travel time to s2, it can terminate
and return the requested accumulated travel time prediction.

V. EVALUATION

To evaluate our algorithm’s performance in a real-world
scenario, we first introduce our simulation methodology
based on a real-world dataset. Afterward, we compare its
results to other approaches.

A. Methodology

The available dataset contains 1.4 million trip recordings
on 108 routes in Aachen in Germany from the year 2019. As
a pre-selection, we dropped incomplete trips, selected evenly
distributed recordings throughout the year, and selected lines
with sufficient recordings. After the pre-selection, 28 lines
remain, which correspond to 120,000 recorded trips. Models
that can handle multiple lines, create predictions for all lines,
whereas models that can only predict for a single line, predict
on a single representative line.

We split the dataset into training and validation sets by a
fixed date to mimic realistic conditions, i. e., the prediction
models can use all observations before that date for training.
Afterward, all further observations are treated as real-time
measurements for the Kalman Filter, which matches an
actual deployment’s conditions. All simulations have been
performed on an Intel Core i7-9700 CPU with eight cores
and 16 GB of RAM without GPU acceleration.

Each simulation run contains parameters relevant during
a simulation. The request time is defined as the difference
between a prediction request’s placement and the planned
arrival time. From the passengers’ perspective, high accuracy
at small request times is more crucial than accuracy at very
high request times. Hence, all simulations create prediction
requests with request times of 1, 2, 5, 10, 15, 30, 45, 60, and
120 minutes. Thereby, the evaluation sets a focus on small
request times.

For measuring the accuracy of predicted travel times, we
use the Root Mean Squared Error (RMSE) as given in (4).

RMSE =

√
∑

n
i=1(oTTi−pTTi)

2

n
(4)

To compute the RMSE, we sum up for each stop si the differ-
ence between the observed travel time oTTi and the predicted
travel time pTTi. The RMSE penalizes large prediction errors
stronger; hence the further a travel time prediction diverges
from the actual travel time, the stronger it is penalized. This
evaluation does not present other metrics such as the Mean
Absolute Error or Mean Absolute Percentage Error, as these
metrics have shown the same trend as the RMSE.

B. Results

Table II shows the tunable parameters of the models and
their optimal values. The window size determines how far
back from the time of the request the KF incorporates

TABLE II: Optimal parameters for the model

Parameter Model Optimal Value

Cluster Balancing Factor PSM 35
Fractional Distance Norm Parameter PSM 0.1
Number of Historic Trips PSM ≥ 1250
Process Noise Variance KF 0 s2

Observation Noise Variance KF 500 s2

Window Size KF 45 min
Appliance Limit KF 25 min

observed running times, and the appliance limit specifies how
long the KF is enabled in the prediction process. We assume
that the parameters’ influences on the prediction accuracy are
independent of each other. Hence, in each of our simulations,
only one parameter is varied while the other parameters are
set to a fixed value. After computing the parameters, we
verified this assumption by performing a grid search with the
parameters in the found solution’s vicinity. All parameters
except for the process noise variance might depend on the
use case, and we can define only general trends. However,
all parameters significantly influence the model’s accuracy.

Next, we compare the accuracy of the different models.
Fig. 2 compares the newly developed PSM+KF model to the
simple delay-based and ConvLSTM models [8] for request
times of 45, 10, and 2 minutes. If not otherwise stated, the
ConvLSTM is trained on a single line with 1000 trips, while
all other models are trained and averages over all 28 lines,
as the ConvLSTM model is unable to predict for multiple
lines. Furthermore, the distinct parts of the PSM+KF model
are evaluated separately to see their particular influence on
the prediction. Only the PSM+KF and the Kalman Filter
utilize real-time data for all evaluation results, while the other
approaches only predict based on past trip recordings. For
large request times, the models which create a model based
on recorded data such as the PSM+KF and the ConvLSTM
significantly outperform the Kalman Filter. The PSM+KF
model performs best here, closely followed by the PSM and
ConvLSTM model. For medium request times, the accuracy
of all predictors significantly increases. The KF has the most
significant increase in accuracy as it is only able to utilize
real-time information. Most models here perform equally
well. The ConvLSTM model performs best, even without
real-time information, directly followed by the PSM+KF
model. For request times of 2 minutes, the KF can give
even better predictions better than the delay-based model.
Here, the ConvLSTM model is also the best predictor, with
the PSM+KF model close behind. The data shows that the
KF can substantially increase the PSM’s performance for
medium and short request times, enabling the model to
react to sudden changes. The performance of the ConvLSTM
model, even without real-time data and without the request
times matching its internal time resolution of 15 minutes
is exceptional. The PSM+KF model closely follows the
accuracy of the ConvLSTM model, therefore we compare
the performance of these two models in more detail.

For this comparison, we train the ConvLSTM and
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Fig. 3: Performance comparison between the PSM+KF and
ConvLSTM model and stability of the PSM+KF model.

PSM+KF models on the same line with the same data. The
line is the ConvLSTM line from Fig. 2 as this line has
the largest amount of trips available. The PSM+KF model
utilizes available real-time data, while the ConvLSTM only
utilizes historic data. In Fig. 3a, the impact of different
training set sizes on accuracy is investigated. The PSM+KF
model performs better with a low amount of training data.
With a high volume of training data, both models achieve
similar accuracy. The ConvLSTM model requires at least
300 data samples, whereas the PSM+KF model can already
work with fewer samples.

In Fig. 3b, the accuracy per training time unit in relation
to the training samples is shown. It becomes apparent that
the PSM+KF model requires much less data and less time
to predict in a similar quality to that of a neural network.

Fig. 3c compares the accuracy of the ConvLSTM with the
PSM+KF model at request times of 15, 30, and 45 minutes,
matching the time resolution of the ConvLSTM model [8].
The ConvLSTM achieves similar accuracy as the PSM+KF

model at request times of 15 and 30 minutes. At request
times of 45 minutes, the ConvLSTM model outperforms the
PSM+KF model. In practice, the travel time’s request time
will rarely precisely match the neural network’s resolution,
giving the PSM+KF model a slight advantage: The average
RMSE of all request times, including those not shown in
the graph, is lower for the PSM+KF (103.44 s) than for the
neural network (112.47 s).

Fig. 3a to Fig. 3c show that the accuracy of the PSM+KF
and the ConvLSTM model are approximately on par, with the
PSM+KF model sometimes outperforming the ConvLSTM
and vice-versa. However, the comparison of the required
training data shows that the PSM+KF model requires much
less training data and requires much less time for the training.
The reached accuracy divided by the training time is two
orders of magnitude less than that of the ConvLSTM model,
highlighting the small complexity of the PSM+KF model in
terms of data and time demand.

Fig. 3d highlights the stability of the PSM+KF model.
We compared training on a fixed dataset from June with a
moving training horizon. For the moving training, the model
trains on data of the previous month to the prediction month.
Both models predict with roughly the same accuracy, making
it unnecessary to retrain the model often. Characteristics in
the data cause the fluctuations of the RMSE in October.

We were surprised by the similar accuracy between the
PSM+KF and ConvLSTM models. The similar performance
stems from the limitation of the training data to 700 trips. On
the one hand, the average dataset available does not provide
any more recorded trips: The average number of recorded
trips per line decreases with a greater variety of lines. On the
other hand, the lack of data also stems from the evaluation, as
fair evaluation conditions set the same training data limit for
all models. Moreover, most lines have a service frequency of
15 minutes or less, leading to the temporal grid’s step size of
at least 15 minutes. Likely, the accuracy at low request times
increases drastically with a smaller time step size; however,
the vehicle’s trip frequency must be similar high, so that each
time step has at least multiple observations. In the future, we
aim to compare the PSM+KF model with a perfectly trained
ConvLSTM model.



VI. CONCLUSION AND FUTURE RESEARCH

This paper motivated the need for an algorithm for short-
term bus travel time prediction in urban areas. In contrast
to related work, the scalability and the applicability of the
model in practice were critically important. Our algorithm’s
design ensures that it can combine available recorded data
of past trips and relevant real-time information from other
vehicles into a high-quality travel time prediction. The
prediction algorithm consists of two distinct steps. First, a
prediction is computed based on information of past travel
times. Secondly, this prediction is adjusted with real-time
information from other vehicles that recently traveled on the
same links.

Our evaluation highlights both accuracy and scalability
and demonstrates the practical application of the proposed
model. Even though we set out to create a scalable algorithm
with average accuracy, it keeps pace with state-of-the-art
neural networks while requiring only a fraction of the train-
ing data. These properties stem from the excellent prediction
quality of the profile similarity model and the inclusion of
real-time information through the Kalman Filter.

For future work, we are mainly interested in improving
the approach’s accuracy and practicability and extending
the evaluation by integrating more approaches. We examine
incorporating additional information sources available in ITS
into the prediction, e. g., external traffic monitoring services.
Moreover, we want to improve the algorithm’s practical
usability by handling edge cases. Currently, the k-medoids
clustering, for example, does not always return any clusters
due to discarding clusters based on the balancing factor.
Another unhandled edge case is predicting the departure time
for the first stop of a line. Accumulated delays from previous
trips are also not transferred to the next trip of a bus.

With PSM+KF, we present a practical and accurate travel
time prediction algorithm for public transit operators. The
algorithm uses readily available data in ITS, trip recordings,
and real-time data and focuses on practical applicability.
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