This project aims to develop a methodology for the systematic selection and implementation of identifier systems in manufacturing, with a focus on ultrashort-pulsed (UKP) laser systems. By creating a robust identification framework tailored to manufacturing environments, the project will enhance data traceability, interoperability, and reusability within data-driven feedback loops, particularly in highly automated settings. The ...
This project aims to develop a comprehensive knowledge graph that represents German law documents, including cases and statutes. By creating an ontology tailored to the legal domain and leveraging automated annotation techniques, the project will transform unstructured legal text into structured data that can be queried. This knowledge graph will support legal research, enhance information ...
This thesis investigates the application of federated learning (FL) to the Personal Health Train (PHT) paradigm, exploring how FL can be better adapted to improve privacy-preserving data analysis in healthcare. The research examines how PHT can facilitate secure, distributed machine learning on sensitive medical data across different institutions, while ensuring data privacy and compliance with ...
This research investigates hallucination in vision-language models, focusing on the role of the attention mechanism in contributing to and potentially mitigating hallucinations. The work explores how attention layers influence the integration of visual and textual information and identifies techniques for reducing the generation of inaccurate or irrelevant outputs. A critical research question is understanding how ...
This thesis focuses on designing an Agentic Graph Retrieval-Augmented Generation (RAG) system specifically for question answering in oral maxillofacial surgery (OMS) guidelines. By leveraging graph-based knowledge representation and advanced language models, the system aims to improve accuracy and efficiency in accessing and interpreting surgical guidelines. Key research areas include the integration of graph databases, ontology-based ...
This thesis explores the application of diffusion models for the segmentation of brain tumors in 3D MRI images. By leveraging the robust generative capabilities of diffusion models, the research investigates how these models can accurately identify and segment tumor regions in volumetric MRI data. The study focuses on enhancing tumor detection accuracy and addressing challenges ...
Mixed reality agents are simulated humans who are displayed in a mixed reality environment, e.g., in augmented reality or virtual reality. They provide the opportunity to support teaching activities with automation. Possible use cases include general presentations in one place, e.g., of lecture content and station-based routes as seen in museums or with tourist guides. ...
As universities strive to enhance the effectiveness of their lecture exercises, there arises a need for diverse and realistic test user scenarios to evaluate the understandability and usefulness of educational materials. However, in creating such scenarios a number of challenges arise: Real world students can rarely be used for testing, they are likely inexperienced or ...
Fine-tuning pre-trained large language models (LLMs) enhances biomedical text mining. This thesis introduces a tool capable of performing tasks such as Named Entity Recognition (NER), Normalization (NEN), and Knowledge Graph Construction (KGC). A key research question explores how LLMs can address the challenges of named entity recognition, normalization, and relation extraction in biomedical contexts.