Kategorie: ‘Seminars’
Dataspaces Proseminar
Inhalt
Die Anforderungen an den Datenaustausch im World Wide Web haben sich in den letzten Jahrzehnten stetig verändert. Anfangs konsumierten die Nutzer nur manuell ausgewählte Inhalte. Durch Trends wie IoT und Industrie 4.0 ist die Datenmenge exponentiell gestiegen, aber Suchmaschinen wie Google helfen dabei. Durch Social Media können Menschen auch selbst Inhalte produzieren und mit anderen teilen, allerdings meist nur über große zentrale Plattformen wie Facebook / Meta. Eine Entwicklung hin zu dezentraleren Lösungen ist seit etwa zehn Jahren im Gange, z.B. durch Blockchain. Die aktuellen Bedürfnisse im Internet sind der einfache Austausch über Domänen hinweg, Interoperabilität und vor allem Datensouveränität – also die Kontrolle über die eigenen Daten, auch wenn man sie mit anderen teilt. Dataspaces, die in Europa mit 4 bis 6 Milliarden Euro gefördert werden, adressieren genau diese Anforderungen an einen modernen Datenaustausch. In Kombination mit Semantic Web-Technologien und FAIR-Daten bieten sie vielversprechende Lösungen.
Dieses Proseminar beschäftigt sich mit Datenräumen und untersucht semantische Technologien zur Verbesserung der Dateninteroperabilität und des gemeinsamen Verständnisses. Die Inhalte umfassen grundlegende Konzepte, Prinzipien, Best Practices und Lösungen zur Verbesserung des Datenmanagements in Datenräumen.
Die Schwerpunkte dieses Proseminars sind u.a.:
- Struktur, Architektur, Entwicklung und Betrieb von Datenräumen
- Die Landschaft der > 185 existierenden Datenräume und deren Domänen
- FAIR Data, Knowledge Graphs und Linked (Open) Data als semantische Technologien für Datenräume
- Informationsmodelle als gemeinsamer Kern für die strukturierte Darstellung von Daten, Diensten, Teilnehmern und Interaktionen
- Prinzipien der Datenintegration: Verbesserung der Zugänglichkeit von Daten für verschiedene Arten von Heterogenität
- Gemeinsames Verständnis zwischen Teilnehmern: Identifikation, Vokabulare/Ontologien, Annotation, Validierung
Ablauf
Dieses Proseminar besteht aus einem Einführungskurs in Datenräume (Dataspaces). Sie halten einen kurzen Vortrag über Ihr Thema, um einen Überblick und die Erwartungen an die zu erstellende Arbeit zu vermitteln. Das Hauptergebnis des Proeminars ist eine Ausarbeitung, die den aktuellen Stand der Technik zu dem von Ihnen gewählten Thema beschreibt. Sie müssen keine eigenen Forschungsarbeiten durchführen, aber Ihre Aufgabe ist es, die wissenschaftlichen Fähigkeiten der Literaturrecherche, der Darstellung einer Forschungsfrage und des Verständnisses und der Einordnung relevanter Arbeiten in den Kontext zu demonstrieren. Darüber hinausbewerten Sie die Vor- und Nachteile bestehender Lösungen kritisch und vergleichen diese. Sie bewerten die Arbeiten Ihrer Kommilitonen (Peer-Review) und geben Feedback, um Ihre Fähigkeiten im wissenschaftlichen Schreiben zu verbessern. In einem Blockseminar am Ende des Semesters stellen Sie Ihre Arbeit in einer Abschlusspräsentation vor.
Social Computing Seminar
Social Computing embodies the intricate interplay between evolving computational systems and dynamic societal behaviors. This field examines how technology can be crafted to interpret and enhance human interactions and observes these systems’ transformative influence on our social fabric.
Knowledge Graphs Seminar
Knowledge Graphs are large graphs used to capture information about the real world in such a way that is is useful for applications. In these data structures, there are all sorts of entities (for example, people, events, places, organizations, etc.). Knowledge Graphs are used by many organizations to represent the information they need for their operations. The most well-known example is Google, where a knowledge graph is used to enrich the search results. Also personal assistants, such as Amazon’s Alexa, Apple’s Siri and Google Now, as well as question answering systems such as IBM Watson, make use of knowledge graphs to provide information to their users.
Besides these, also other information graphs, are in use by large organizations to improve or personalize their services. Examples include the Facebook graph, the Amazon product graph, and the Thompson Reuters Knowledge Graph.
The graph also contains all sorts of information about these entities (e.g., age, opening hours, …) and relations between them (e.g., “this shop is located in Aachen”). Furthermore, it may contain context information (e.g., the source of some information) and schema information or background knowledge (e.g., “shops have opening hours”).
Deliverables of this seminar
This seminar consists of an introductory course on Knowledge Graphs. You will give a short outline presentation on your assigned topic to set overview and expectations about the paper you’re going to write. The main deliverable of the seminar is a paper that describes the state of the art of your assigned topic. While you do not need to contribute original research, your task is to show the scientific competences of literature research, presentation of a research question and understanding and putting relevant papers into context. Furthermore, you are asked to critically assess and compare strengths or challenges of existing solutions. You will review your peer’s papers and give relevant feedback to enhance your scientific writing skills. You will present your paper in a final presentation in a block seminar at the end of the semester.
Seminar Data Ecosystems
Organizations in many domains, such as manufacturing or healthcare, have a huge demand to exchange data to enable new services, drive research and innovation, or improve patient care.
Hence, organizations require alliance-driven infrastructures capable of supporting controlled data exchange across diverse stakeholders and transparent data management. Data Ecosystems are distributed, open, and adaptive information systems with the characteristics of being self-organizing, scalable, and sustainable trying to fulfil these requirements.
But there are many open issues, which make the exchange on a technological, processual, and organizational level a challenge. In this seminar, we will identify and discuss the main challenges in data ecosystems, such as data quality, data transparency, and data integration.
Seminar Artificial Intelligence in Circular Economy Applications
This seminar offers a collaborative and research-focused exploration of how Artificial Intelligence (AI) can be effectively employed to address challenges within the circular economy. Students will actively contribute by conducting their own research and presenting their findings.
Seminar Large Language Models – UCD-driven Metrics and Benchmarks
The development of a user-centered quality metric for the outputs of large language models in corporate contexts addresses a key challenge: How can the quality and relevance of AI-powered systems be effectively evaluated and enhanced to optimally meet the specific requirements of companies and their employees? The motivation for this research concept stems from the necessity to develop a systematic and quantifiable method for assessing user satisfaction and the usefulness of LLM outputs.
Seminar Privacy and Big Data
This seminar is about new and emerging approaches to adjust and balance privacy and utility in data intensive applications, such as information retrieval, data mining and personalisation. These new approaches have the potential to enable a new generation of privacy-enabled services which are not focused on maximizing the collection of user data. Instead these new approaches enable user privacy under different threat models, such as protecting the identity of individual users when querying aggregated data, or preventing leakage of query patterns when users retrieve data from a database. As a result, these new approaches may help businesses in their compliance with increasingly regulatory trust and reinforce user trust, while enabling new business models at the same time.
Knowledge Graphs Seminar
Knowledge Graphs are large graphs used to capture information about the real world in such a way that is is useful for applications. In these data structures, there are all sorts of entities (for example, people, events, places, organizations, etc.). Knowledge Graphs are used by many organizations to represent the information they need for their operations. The most well-known example is Google, where a knowledge graph is used to enrich the search results. Also personal assistants, such as Amazon’s Alexa, Apple’s Siri and Google Now, as well as question answering systems such as IBM Watson, make use of knowledge graphs to provide information to their users.
Besides these, also other information graphs, are in use by large organizations to improve or personalize their services. Examples include the Facebook graph, the Amazon product graph, and the Thompson Reuters Knowledge Graph.
The graph also contains all sorts of information about these entities (e.g., age, opening hours, …) and relations between them (e.g., “this shop is located in Aachen”). Furthermore, it may contain context information (e.g., the source of some information) and schema information or background knowledge (e.g., “shops have opening hours”).
Deliverables of this seminar
This seminar consists of an introductory course on Knowledge Graphs. You will give a short outline presentation on your assigned topic to set overview and expectations about the paper you’re going to write. The main deliverable of the seminar is a paper that describes the state of the art of your assigned topic. While you do not need to contribute original research, your task is to show the scientific competences of literature research, presentation of a research question and understanding and putting relevant papers into context. Furthermore, you are asked to critically assess and compare strengths or challenges of existing solutions. You will review your peer’s papers and give relevant feedback to enhance your scientific writing skills. You will present your paper in a final presentation in a block seminar at the end of the semester.
Seminar Privacy and Big Data
This seminar is about new and emerging approaches to adjust and balance privacy and utility in data intensive applications, such as information retrieval, data mining and personalisation. These new approaches have the potential to enable a new generation of privacy-enabled services which are not focused on maximizing the collection of user data. Instead these new approaches enable user privacy under different threat models, such as protecting the identity of individual users when querying aggregated data, or preventing leakage of query patterns when users retrieve data from a database. As a result, these new approaches may help businesses in their compliance with increasingly regulatory trust and reinforce user trust, while enabling new business models at the same time.
Data Science in Medicine
Health data analytics is one of the main drivers for the future of medicine. Various sources of big data, including patient records, diagnostic images, genomic data, wearable sensors, are being generated in our everyday life by health care practitioners, researchers, and patients themselves. Data science aims to identify patterns, discovering the underlying cause of diseases and well being by analyzing this data.